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ABSTRACTWe extend the theory of Gr�obner bases to di�eren
e-di�eren-tial modules. The main goal of this paper is to present andverify algorithms for 
onstru
ting Gr�obner bases for su
hdi�eren
e-di�erential modules. To this aim we introdu
ethe 
on
ept of generalized term order on Nm � Zn and ondi�eren
e-di�erential modules.
Categories and Subject DescriptorsI.1.2 [Symboli
 and Algebrai
 Manipulation℄: Algo-rithms|Algebrai
 algorithms
General TermsAlgorithms
KeywordsGr�obner basis, di�eren
e and di�erential operators
1. INTRODUCTIONThe usefulness of the 
lassi
al Gr�obner basis method for thealgorithmi
 solution of problems in polynomial ideal theoryis well-known. The results of Bu
hberger [2℄, [3℄ on Gr�obnerbases in polynomial rings have been extensively des
ribed,for instan
e by Be
ker and Weispfenning [1℄, Cox et al. [4℄,and Winkler [14℄. The theory has been generalized by manyauthors to non-
ommutative domains, espe
ially to mod-ules over various rings of di�erential operators. Galligo [5℄�rst gave the Gr�obner basis algorithm for the Weyl algebraAm(K) of partial di�erential operators with 
oeÆ
ients ina polynomial ring over the �eld K. Mora [9℄ generalizedthe 
on
ept of Gr�obner basis to non-
ommutative free al-gebras. Kondrateva et al. [7℄ des
ribed the Gr�obner basismethod for di�erential and di�eren
e modules. Noumi [10℄and Takayama [13℄ formulated Gr�obner bases in Rn, the ringof di�erential operators with rational fun
tion 
oeÆ
ients.Oaku and Shimoyama [11℄ treated D0, the ring of di�eren-tial operators with power series 
oeÆ
ients. Insa and Pauer
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[6℄ presented a basi
 theory of Gr�obner bases for di�eren-tial operators with 
oeÆ
ients in a 
ommutative Noetherianring. It has been proved that the notion of Gr�obner basisis a powerful tool to solve various problems of linear partialdi�erential equations.On the other hand, for some problems of linear di�eren
e-di�erential equations su
h as the dimension of the spa
e ofsolutions and the 
omputation of di�eren
e-di�erential di-mension polynomials, the notion of Gr�obner basis for thering of di�eren
e-di�erential operators is essential. WhereasGr�obner bases in rings of di�erential operators are de�nedwith respe
t to a term order on Nn � Nn or Nn , this ap-proa
h 
annot be used for the ring of di�eren
e-di�erentialoperators. We need to treat orders on Nm �Zn. Pauer andUnterkir
her [12℄ 
onsidered Gr�obner bases in Laurent poly-nomial rings, but their approa
h is limited to the 
ommu-tative 
ase. Levin [8℄ introdu
ed 
hara
teristi
 sets for freemodules over rings of di�eren
e-di�erential operators. Su
h
hara
teristi
 sets depend on a spe
i�
 order on Nm � Zn.But this order is not a term order in the sense of the theoryof Gr�obner bases.The main purpose of this paper is to give a new approa
hto the 
omputation of a Gr�obner basis for an ideal in (ora module over) the ring of di�eren
e-di�erential operators.Our notion of Gr�obner basis is based on a generalized termorder on Nm � Zn. In Se
tion 2 the generalized term orderand its properties are dis
ussed and some examples are pre-sented. In Se
tion 3 we introdu
e the redu
tion algorithm,the de�nition of the Gr�obner basis and the S-polynomials,as well as the Bu
hberger algorithm for the 
omputation ofGr�obner bases. Further details 
an be found in [15℄.Throughout the paper, N, Z, Z+, Z� and Q denote thesets of natural numbers, integers, nonnegative integers (i.e.natural numbers), nonpositive integers, and rational num-bers, respe
tively. By a ring we always mean an asso
iativering with a unit. By the module over a ring A we mean aunitary left A-module.Definition 1.1. Let R be a 
ommutative Noetherian ring.Let � = fÆ1; � � � ; Æmg be a set of derivations on R and� = f�1; � � � ; �ng a set of automorphisms of R, su
h that�(x) 2 R and �(�(x)) = �(�(x)) for any �; � 2 � [ � andx 2 R. Then R is 
alled a di�eren
e-di�erential ring withthe basi
 set of derivations � and the basi
 set of automor-phisms �, or shortly a �-�-ring; if R is a �eld, then it is
alled a �-�-�eld.This notion of di�eren
e-di�erential ring is motivated bythe following example.



Example 1.1. Let R = K[x1; : : : ; xn℄ for a �eld K, Æi =�=�xi and �i the automorphism whi
h maps xi to xi �1. Then R is a �-�-ring for � = fÆ1; : : : ; Æng and � =f�1; : : : ; �ng.Let R be a �-�-ring. By �� we denote the free 
ommu-tative semigroup 
onsisting of all words over � of the formÆk11 � � � Ækmm , where (k1; : : : ; km) 2 Nm .By ~� we denote � together with its inverses, i.e. ~� =� [ f��1 j � 2 �g. By �� we denote the free 
ommuta-tive semigroup 
onsisting of all words over � of the form�l11 � � ��lnn , where (l1; : : : ; ln) 2 Nn . By ~�� we denote thefree 
ommutative group 
onsisting of all words over ~� of theform �l11 � � ��lnn , where (l1; : : : ; ln) 2 Zn.By � = (�~�)� we denote the free 
ommutative semigroup
onsisting of all words over � and ~� of the form� = Æk11 � � � Ækmm �l11 � � ��lnn ; (1:1)where (k1; : : : ; km) 2 Nm and (l1; : : : ; ln) 2 Zn. Elements of� are 
alled terms.Definition 1.2. Let R be a �-�-ring and the semigroup� be as above. Then an expression of the formX�2�a��; (1:2)where a� 2 R for all � 2 � and only �nitely many 
o-eÆ
ients a� are di�erent from zero, is 
alled a di�eren
e-di�erential operator (or shortly a �-�-operator) over R.Two �-�-operators P�2� a�� and P�2� b�� are equal ifand only if a� = b� for all � 2 �.The set of all �-�-operators over a �-�-ring R is a ringwith the following fundamental relationsP�2� a��+P�2� b�� = P�2�(a� + b�)�;a(P�2� a��) = P�2�(aa�)�;�P�2� a���� = P�2� a�(��);Æa = aÆ + Æ(a); �a = �(a)�; (1:3)for all a�; b� 2 R, �; � 2 �, a 2 R, Æ 2 �, � 2 ~�. Note thatthe elements in � and ~� do not 
ommute with the elementsin R, and therefore the terms � 2 � do not 
ommute withthe 
oeÆ
ients a� 2 R.Definition 1.3. The ring of all �-�-operators over a �-�-ring R is 
alled the ring of di�eren
e-di�erential operators(or shortly the ring of �-�-operators) over R. It will bedenoted by D. A left D-module M is 
alled a di�eren
e-di�erential module (or a �-�-module). If M is �nitelygenerated as a left D-module, then M is 
alled a �nitelygenerated �-�-module.When � = ;, D will be the ring of di�erential opera-tors R[Æ1; � � � ; Æm℄. If the 
oeÆ
ient ring R is the polyno-mial ring in x1; : : : ; xm over a �eld K and Æi = �=�xi for1 � i � m, then D will be the Weyl algebra Am(K). So�-�-modules are generalizations of modules over rings ofdi�erential operators. But in the ring of �-�-operators theterms are of the form (1.1) and the exponent in �1; � � � ; �nis (l1; � � � ; ln) 2 Zn. The notion of term order, as 
ommonlyused in Gr�obner basis theory, is no longer valid. We need togeneralize the 
on
ept of term order.

2. GENERALIZED TERM ORDERFirst we 
onsider de
ompositions of the group Zn.Definition 2.1. Let Zn be the union of �nitely manysubsets Znj , i.e. Zn = Skj=1 Znj , where Znj , j = 1; � � � ; k,satisfy the following 
onditions:(i) (0; � � � ; 0) 2 Znj , and Znj does not 
ontain any pair ofinvertible elements 
 = (
1; � � � ; 
n) 6= 0 and �
 =(�
1; � � � ;�
n),(ii) Znj is isomorphi
 to Nn as a semigroup,(iii) the group generated by Znj is Zn.Then fZnj j j = 1; � � � ; kg is 
alled an orthant de
ompositionof Zn and Znj is 
alled the j-th orthant of the de
omposition.Example 2.1. Let fZn1; � � � ;Zn2ng be all distin
t Carte-sian produ
ts of n sets ea
h of whi
h is either Z+ or Z�.Then this is an orthant de
omposition of Zn. The set ofgenerators of Znj as a semigroup isf(
1; 0; � � � ; 0); (0; 
2; 0; � � � ; 0); � � � ; (0; � � � ; 0; 
n)g;where 
j is either 1 or �1, j = 1; � � � ; n. We 
all this de-
omposition the 
anoni
al orthant de
omposition of Zn.Example 2.2. Consider n 2 N. For i = 1; : : : ; n letzi = (zi;j)1�j�n;where zi;j = (0 for i 6= j1 for i = j :Furthermore let z0 = (z0;j)1�j�n, where z0;j = �1.Let Zn0 be the sub-semigroup of Zn generated byfzi j 1 � i � ng;and for 1 � j � n let Znj be the sub-semigroup of Zn gener-ated by fz0g [ fzi j 1 � i � n and i 6= jg:Then fZn0 ;Zn1; � � � ;Znng is an orthant de
omposition of Zn.For n = 2, we haveZ20 = f(a; b)ja � 0; b � 0; a; b 2 Zg;Z21 = f(a; b)ja � 0; b � a; a; b 2 Zg;Z22 = f(a; b)jb � 0; a � b; a; b 2 Zg:Definition 2.2. Let fZnj j j = 1; � � � ; kg be an orthantde
omposition of Zn. Then a = (k1; � � � ; km; l1; � � � ; ln) andb = (r1; � � � ; rm; s1; � � � ; sn) of Nm � Zn are 
alled similarelements, if the n-tuples (l1; � � � ; ln) and (s1; � � � ; sn) are inthe same orthant Znj of Zn.Definition 2.3. Let fZnj j j = 1; � � � ; kg be an orthantde
omposition of Zn. A total order � on Nm �Zn is 
alled ageneralized term order on Nm�Zn w.r.t. the de
omposition,if the following 
onditions hold:(i) (0; � � � ; 0) is the smallest elements in Nm �Zn,(ii) if a � b, then a+ 
 � b+ 
 for any 
 similar to b.



Example 2.3. (a) Let fZnj j j = 1; � � � ; 2ng be the 
anon-i
al orthant de
omposition of Zn de�ned in Example 2.1. Forevery a = (k1; � � � ; km; l1; � � � ; ln) 2 Nm �Zn letjaj = k1 + � � �+ km + jl1j+ � � �+ jlnj:For two elements a = (k1; � � � ; km; l1; � � � ; ln) andb = (r1; � � � ; rm; s1; � � � ; sn) of Nm � Zn de�ne a � b if andonly if the (1 + m + n)-tuple (jaj; k1; � � � ; km; l1; � � � ; ln) issmaller than (jbj; r1; � � � ; rm; s1; � � � ; sn) w.r.t. the lexi
o-graphi
 order on Nm+1 � Zn. Then "�" is a generalizedterm order on Nm �Zn.(b) Let the orthant de
omposition of Zn be as in Example2.1. For every a = (k1; � � � ; km; l1; � � � ; ln) 2 Nm �Zn letjaj1 = mXj=1 kj ; jaj2 = nXj=1 jlj j:For two elements a = (k1; � � � ; km; l1; � � � ; ln) andb = (r1; � � � ; rm; s1; � � � ; sn) of Nm � Zn de�ne a � b if andonly if the (2 +m+ 2n)-tuple(jaj1; jaj2; k1; � � � ; km; jl1j; � � � ; jlnj; l1; � � � ; ln)is lexi
ographi
ally smaller than(jbj1; jbj2; r1; � � � ; rm; js1j; � � � ; jsnj; s1; � � � ; sn):Then "�" is a generalized term order on Nm �Zn.(
) Let fZ(n)j ; j = 0; 1; � � � ; ng be the orthant de
ompositionof Zn de�ned in Example 2.2. For every elementa = (k1; � � � ; km; l1; � � � ; ln) 2 Nm �Zn letkak = �minf0; l1; � � � ; lng :For two elements a = (k1; � � � ; km; l1; � � � ; ln) andb = (r1; � � � ; rm; s1; � � � ; sn) of Nm � Zn de�ne a � b if andonly if the (1 +m+ n)-tuple (kak; k1; � � � ; km; l1; � � � ; ln) islexi
ographi
ally smaller than (kbk; r1; � � � ; rm; s1; � � � ; sn).Then "�" is a generalized term order on Nm �Zn.In order to investigate �-�-modules, we need to extendthe notion of generalized term order to Nm �Zn�E, whereE = fe1; � � � ; eqg is a set of generators of a module.Definition 2.4. Let fZnj j j = 1; � � � ; kg be an orthantde
omposition of Zn. Let E = fe1; � � � ; eqg be a set of qdistin
t elements. A total order � on Nm �Zn�E is 
alleda generalized term order on Nm �Zn�E w.r.t. the de
om-position, if the following 
onditions hold:(i) (0; � � � ; 0; ei) is the smallest element in Nm �Zn�feigfor any ei 2 E,(ii) if (a; ei) � (b; ej), then (a+ 
; ei) � (b+ 
; ej) for any
 similar to b.There are many ways to extend a generalized term orderon Nm�Zn to Nm�Zn�E. Of 
ourse su
h an extended termorder may also be de�ned dire
tly. Some typi
al examplesare shown below.Example 2.4. Let the orthant de
omposition of Zn andthe generalized term order "�" on Nm�Zn be as in Example2.3(b). Given an order "�E" on E = fe1; � � � ; eqg, for twoelements(a; ei) = (k1; � � � ; km; l1; � � � ; ln; ei) and(b; ej) = (r1; � � � ; rm; s1; � � � ; sn; ej)

of Nm �Zn�E de�ne:(a; ei) �1 (b; ej)() a � b or (a = b and ei �E ej);(a; ei) �2 (b; ej)() ei �E ej or (ei = ej and a � b);(a; ei) �3 (b; ej)()(jaj1; jaj2; ei; k1; � � � ; km; jl1j; � � � ; jlnj; l1; � � � ; ln)< (jbj1; jbj2; ej ; r1; � � � ; rm; js1j; � � � ; jsnj; s1; � � � ; sn)in lexi
ographi
 order:Then "�1", "�2","�3" are generalized term orders on Nm�Zn�E.We say that "�1" is the TOP (i.e. term-over-position)extension of "�" and "�2" is the POT (i.e position-over-term) extension of "�". "�3" is a generalized term orderde�ned dire
tly.Lemma 2.1. Let fZnj j j = 1; � � � ; kg be an orthant de-
omposition of Zn and "�" be a generalized term order onNm � Zn with respe
t to the orthant de
omposition. Thenevery stri
tly des
ending sequen
e in Nm � Zn is �nite. Inparti
ular, every subset of Nm �Zn 
ontains a smallest ele-ment.Proof. Let a1 � a2 � a3 � � � � be a stri
tly des
endingsequen
e in Nm�Zn. Sin
e there are �nitely many orthants,without loss of generality we may assume that all aj are sim-ilar elements, i.e. aj 2 Nm �Zni for a �xed i. By Condition(ii) in De�nition 2.1, Nm � Zni is isomophi
 to Nm+n as asemigroup. De�ne order �1 on Nm+n as follows:a �1 b() f�1(a) � f�1(b);where f is the isomophism from Nm �Zni to Nm+n and � isthe generalized term order on Nm � Zn. Sin
e � is a termorder on Nm�Z(n)i , it is easy to see �1 is a term order (in the
lassi
al sense) on Nm+n . Then the assertion of the Lemmafollows from the well-order property of the term order onNm+n .Corollary 2.1. Given an orthant de
omposition of Znand a generalized term order "�" on Nm � Zn� E, everystri
tly des
ending sequen
e in Nm � Zn � E is �nite. Inparti
ular, every subset of Nm �Zn�E 
ontains a smallestelement.Proof. Let a1 � a2 � a3 � � � � be a stri
tly des
endingsequen
e in Nm � Zn � E. Sin
e E is a �nite set, we maysuppose that all aj are in Nm �Zn�feig for a �xed i. Thenthe 
on
lusion follows immediately from Lemma 2.1.
3. GRÖBNER BASES IN FINITELY GEN-

ERATED DIFFERENCE-DIFFERENTIAL
MODULESLet fZnj j j = 1; � � � ; kg be an orthant de
omposition ofZn and \�" be a generalized term order on Nm �Zn w.r.t.the ortant de
omposition. Let � be the semi-group of termsintrodu
ed in Se
tion 1 in whi
h the elements are of the form(1.1). Sin
e � is isomorphi
 to Nm �Zn as a semigroup, theorder \�" de�nes an order on �; we also 
all it a generalizedterm order on �.Let K be a �-�-�eld and D be the ring of �-�-operatorsover K, and let F be a �nitely generated free D-module (i.e.a �nitely generated free di�eren
e-di�erential-module) witha set of free generators E = fe1; � � � ; eqg. Then F 
an be




onsidered as a K-ve
tor spa
e generated by the set of allelements of the form �ei, where � 2 � and i = 1; : : : ; q.This set will be denoted by �E and its elements will be
alled \terms" of F . If \�" is a generalized term order onNm �Zn�E then \�" obviously indu
es an order on �E,whi
h we also 
all a generalized term order.It is 
lear that every element f 2 F has a unique repre-sentation as a linear 
ombination of termsf = a1�1ej1 + � � �+ ad�dejd (3:1)for some nonzero elements ai 2 K (i = 1; � � � ; d) and somedistin
t elements �1ej1 ; � � � ; �dejd 2 �E. If a term �ej ap-pears with nonzero 
oeÆ
ient in the representation (3.1) off , then it is 
alled a term of f . If (k1; � � � ; km; l1; � � � ; ln)and (r1; � � � ; rm; s1; � � � ; sn) are similar elements in Nm �Znthen the two terms �1 = Æk11 � � � Ækmm �l11 � � ��lnn and �2 =Ær11 � � � Ærmm �s11 � � ��snn in � are also 
alled similar. If �1,�2 2� are similar, then the two terms u = �1ei and v = �2ej 2�E are also 
alled similar.Definition 3.1. Let �1 = Æk11 � � � Ækmm �l11 � � ��lnn and �2 =Ær11 � � � Ærmm �s11 � � ��snn be two elements in �. If they are sim-ilar and r� � k�, js� j � jl� j for � = 1; � � � ;m, � = 1; � � � ; n,then �1 is 
alled a multiple of �2 and this relation is de-noted by �2j�1. If �2j�1 and i = j then u = �1ei is 
alled amultiple of v = �2ej and this relation is denoted by vju.Definition 3.2. Let � be a generalized term order on�E, f 2 F be of the form (3.1). Thenlt(f) = max� f�ieji ji = 1; � � � ; dgis 
alled the leading term of f . If �ieji = lt(f), then ai is
alled the leading 
oeÆ
ient of f , denoted by l
(f).Now we are going to 
onstru
t the division algorithm inthe di�eren
e-di�erential module F . First we 
olle
t someproperties of relating multipli
ation of terms to the ordering.In what follows we always assume that an orthant de
om-position of Zn is given as well as a generalized term order �w.r.t. this de
omposition.Definition 3.3. Let fZnj j j = 1; : : : ; kg be an orthantde
omposition of Zn. Then the subset �j of �,�j = f� = Æk11 � � � Ækmm �l11 � � ��lnn j (l1; � � � ; ln) 2 Znjg;is 
alled the j-th orthant of �. Let F be a �nitely generatedfree D-module and �E be the set of terms of F . Then�jE = f�ei j � 2 �j ; ei 2 Egis 
alled the j-th orthant of �E.Obviously, two elements in � or �E are similar if and onlyif they are in the same orthant. So from De�nition 2.3, if �is a generalized term order on � and � � �, then �� � ��holds for any � in the same orthant as �.Lemma 3.1. Let � 2 �; a 2 K, and � be a generalizedterm order on �E � D. Then�a = a0�+ �;where a0 = �(a) for some � 2 ��. If a 6= 0 then also a0 6= 0.Furthermore, � 2 D with lt(�) � � and all terms of � aresimilar to �.

Note that for a generalized term order � we 
annot expe
t�lt(f) = lt(�f) unless the leading term lt(f) = �ei of f issu
h that � is similar to �.Lemma 3.2. Let F be a �nitely generated free D-moduleand 0 6= f 2 F . Then the following hold:(i) If � 2 �, then lt(�f) = � � u for a unique term u of f .(ii) If lt(f) 2 �jE then for any � 2 �jlt(�f) = � � lt(f) 2 �jE:Lemma 3.3. Let F be a �nitely generated free D-moduleand 0 6= f 2 F . Then for ea
h j, there exists some � 2 �and a unique term uj of f su
h thatlt(�f) = � � uj 2 �jE:We will write ltj(f) for this term uj .If h 2 D, f 2 F , then hf =Pi;k ai;k�iuk for some �i 2 �and uk 2 �E, some of whi
h might not be terms of h andf . It would be problemati
 if lt(hf) � �iuk might o

urfor some �i and uk in hf . The following proposition assertsthat this undesirable situation 
annot o

ur.Proposition 3.1. Let 0 6= f 2 F , 0 6= h 2 D. Thenlt(hf) = max�f�iukg where �i are terms of h and uk areterms of f . Therefore lt(hf) = � � u for a unique term � ofh and a unique term u of f .Now we are ready to introdu
e the 
on
ept of \redu
tion",whi
h is 
entral in the theory of Gr�obner bases.Theorem 3.1. Let f1; � � � ; fp 2 F n f0g. Then every g 2F 
an be represented asg = h1f1 + � � �+ hpfp + r (3:2)for some elements h1; � � � ; hp 2 D and r 2 F su
h that(i) hi = 0 or lt(hifi) � lt(g) for i = 1; � � � ; p,(ii) r = 0 or lt(r) is not a multiple of any lt(�fi) for � 2 �,i = 1; � � � ; p.Proof. The elements h1; � � � ; hp 2 D and r 2 F 
anbe 
omputed as follows: �rst set r = g and hi = 0 fori = 1; : : : ; p. Suppose r 6= 0, i.e.r = l
(r)lt(r) + ~r;and lt(r) is a multiple of lt(�ifi) for an element �i 2 �.Suppose lt(�ifi) 2 �jE. Then there exists an element � 2�j su
h that lt(r) = � � lt(�ifi):By Lemma 3.2.(ii), lt(� � �ifi) = � � lt(�ifi) = lt(r). So� ��ifi = 
i� � lt(�ifi)+�i; i:e: 
i� � lt(�ifi) = � ��ifi��i;where 
i = l
(� � �ifi) and lt(�i) � � � lt(�ifi). Thereforer = l
(r)
i (��ifi � �i) + ~r = l
(r)
i ��ifi + (~r� l
(r)
i �i)| {z }r0 :Now we may repla
e r by r0 and hi by hi + l
(r)
i ��i. We
ontinue this pro
ess as long as r 6= 0 and lt(r) is a multipleof some lt(�ifi). Sin
e in ea
h step we havelt(r0) � lt(� � �ifi) � lt(r) � lt(g);



by the Corollary to Lemma 2.1, the algorithm above termi-nates after �nitely many iterations.Observe that by Proposition 3.1 the statement in part (i)of Theorem 3.1 means that �u � lt(g) for all terms � of hiand all terms u of fi. The r is by no means unique.Definition 3.4. Let f1; : : : ; fp 2 F n f0g, g 2 F . Sup-pose that equation (3.2) holds and the 
onditions (i), (ii) inTheorem 3.1 are satis�ed. If r 6= g we say g 
an be redu
edby ff1; � � � ; fpg to r. In this 
ase we have lt(r) � lt(g) by theproof of Theorem 3.1. In the 
ase of r = g and hi = 0 fori = 1; � � � ; p, we say that g is redu
ed w.r.t. ff1; � � � ; fpg.The following example illustrates the reason for Condition(ii) in Theorem 3.1.Example 3.1. Let K = Q(x1 ; x2), D = K[Æ1; Æ2; �; ��1℄,where Æ1, Æ2 are the partial derivatives w.r.t. x1, x2, re-spe
tively, and � is an automorphism of K. So D is thefÆ1; Æ2g�f�g-ring over the 
oeÆ
ient �eld Q(x1 ; x2). Choosethe generalized term order on N2 �Z as in Example 2.3 (a),i.e. u = Æk11 Æk22 �l � v = Ær11 Ær22 �s ()(kuk; k1; k2; l) <lex (kvk; r1; r2; s);where kuk = k1 + k2 + jlj. Letg = Æ1��2 + Æ2�2; f = Æ1��1 + �:Theng = Æ1��2+Æ2�2 = ��1(Æ1��1+�)+(Æ2�2�1) = ��1f+r1:Although lt(r1) = Æ2�2 is not any multiple of lt(f) = Æ1��1,we 
an �nd � = Æ2� su
h that lt(r1) = lt(�f) = lt(Æ1Æ2 +Æ2�2). Thereforeg = ��1f + Æ2�f + (�Æ1Æ2 � 1) = (��1 + Æ2�)f + r2Now r2 satis�es the 
ondition (ii) in Theorem 3.1. So g isredu
ed by f to r2.Definition 3.5. Let W be a submodule of the �nitelygenerated free D-module F and � be a generalized term or-der on �E. Let G = fg1; � � � ; gpg � Wnf0g. Then G is
alled a Gr�obner basis of W (w.r.t. the generalized termorder �) if and only if for every f 2 W n f0g, lt(f) is amultiple of lt(�gj) for some � 2 �, gj 2 G. If every elementof G is redu
ed with respe
t to the other elements of G, thenG is 
alled a redu
ed Gr�obner basis of W .Proposition 3.2. Let G be a �nite subset of W n f0g.The following assertions hold:(i) G is a Gr�obner basis of W if and only if every f 2 W
an be redu
ed by G to 0. So a Gr�obner basis of Wgenerates the D-module W .(ii) If G is a Gr�obner basis of W , f 2 F , then f 2 W ifand only if f 
an be redu
ed by G to 0.(iii) If G is a Gr�obner basis of W , then f 2 W is redu
edw.r.t. G if and only if f = 0.Proof. (i) If G is a Gr�obner basis of W and f 2W , thenby Theorem 3.1 f 
an be redu
ed by G to r with lt(r) notbeing a multiple of any lt(�g) for � 2 �; g 2 G. Sin
e r 2 Wand G is a Gr�obner basis for W , we must have r = 0.

On the other hand, if every f 2 W 
an be redu
ed by Gto 0, then f = Pg2G hgg. By Proposition 3.1, there is ag 2 G su
h that lt(f) = maxg2Gflt(hgg)g = �u for a termof hg and a term of g. So lt(f) = lt(�g). By De�nition 3.5G is a Gr�obner basis of W .(ii) and (iii) follow easily from Theorem 3.1 and De�nition3.5.Example 3.2. If W is generated by just one element g 2F n f0g, then any �nite subset G of W n f0g 
ontaining g isa Gr�obner basis of W . In fa
t, 0 6= f 2 W implies f = hgfor some h 2 D n f0g. By Proposition 3.1, lt(f) = �u =max�f�iukg for a term � of h and a term u of g. Thenlt(f) = lt(�g). By De�nition 3.5, G is a Gr�obner basis ofW .Now we will des
ribe the Bu
hberger algorithm for 
om-puting a Gr�obner basis of a submodule W of F . This re-quires a suitable de�nition of the 
on
ept of S-polynomial.Definition 3.6. Let F be a �nitely generated free D-module and f; g 2 F n f0g. For every �j let V (j; f; g) bea �nite system of generators of the K[�j ℄-moduleK[�j ℄hlt(�f)jlt(�f) 2 �jE; � 2 �i \K[�j ℄hlt(�g)jlt(�g) 2 �jE; � 2 �i:Then for every generator v 2 V (j; f; g),S(j; f; g; v) = vltj(f) fl
j(f) � vltj(g) gl
j(g)is 
alled an S-polynomial of f and g with respe
t to j and v.TheK[�j ℄-module 
onsidered in De�nition 3.6 is a \mono-mial module", i.e. it is generated by elements 
ontainingonly one term. Su
h a module always has a �nite \mono-mial basis", i.e. every basis element 
ontains only one term.In the following we assume that V (j; f; g) is su
h a �nitemonomial basis.The 
omputation of V (j; f; g) involves the generalized termorder on �E. Pauer and Unterkir
her [12℄ have investi-gated V (j; f; g) for 
ommutative Laurent polynomial ringsand have given algorithms for some important 
ases. Theirresults are still valid for di�eren
e-di�erential modules.Example 3.3. Let F = D = K[Æ1; Æ2; �1; ��11 ; �2; ��12 ℄and K = Q(x1 ; x2), where Æ1, Æ2 are the partial derivativesw.r.t. x1 and x2, respe
tively, and �1, �2 are two automor-phism on K. Choose the generalized term order on N2 �Z2as in Example 2.3(
), i.e.u = Æk11 Æk22 �l11 �l22 � v = Ær11 Ær22 �s11 �s22() (kuk; k1; k2; l1; l2) <lex (kvk; r1; r2; s1; s2);where kuk = �min(0; l1; l2).Let f = ��21 � Æ2, g = Æ1 + �42. Note that the orthants of� are �0;�1;�2 as des
ribed in Example 2.2 for n = 2. Itis easy to see thatf� 2 � j lt(�f) 2 �0g = �0�21 ; f� 2 � j lt(�g) 2 �0g = �0and flt(�f) 2 �0 j � 2 �g = �0Æ2�21;flt(�g) 2 �0 j � 2 �g = �0Æ1:



Then V (0; f; g) = fv0g = fÆ1Æ2�21g and by De�nition 3.6,S(0; f; g; v0) = Æ1�21f + Æ2�21g = Æ1 + Æ2�21�42:Similarly we havef� 2 � j lt(�f) 2 �1g = �1�1 ; f� 2 � j lt(�g) 2 �1g = �1and flt(�f) 2 �1 j � 2 �g = �1��11 ;flt(�g) 2 �1 j � 2 �g = �1Æ1:Then V (1; f; g) = fv1g = fÆ1��11 g andS(1; f; g; v1) = Æ1�1f � ��11 g = �Æ1Æ2�1 � ��11 �42:Finally, f� 2 � j lt(�f) 2 �2g = �2�21;f� 2 � j lt(�g) 2 �2g = �2��12 ;flt(�f) 2 �2 j � 2 �g = �2Æ2�21;flt(�g) 2 �2 j � 2 �g = �2Æ1��12 :Then V (2; f; g) = fv2g = fÆ1Æ2�1��12 g andS(2; f; g; v2) = Æ1�1��12 f+Æ2�1��12 g = Æ1��11 ��22 +Æ2�1�32:For the proof of the Generalized Bu
hberger Theorem weneed the following lemmas.Lemma 3.4. Let f1; � � � ; fl 2 F and a1; � � � ; al 2 K. IfPlj=1 aj = 0 , thenlXj=1 ajrj = l�1Xj=1 bj(fj � fj+1)for some bj 2 R.Proof. ObviouslyPlj=1 ajrj =a1(r1 � r2) + (a1 + a2)(r2 � r3) + (a1 + a2 + a3)(r3 � r4)+ � � �+(a1 + a2 + � � �+ al�1)(rl�1 � rl) + (a1 + a2 + � � �+ al)rl:Lemma 3.5. Let gi; gk 2 F and lt(�gi) = lt(�gk) = u 2�jE, where �; � 2 �. Then there exists � 2 �j and v 2V (j; gi; gk), su
h that u = �v. Therefore if G is a �nitesubset of Fnf0g and the S-polynomial S(j; gi; gk; v) 
an beredu
ed to 0 by G then�S(j; gi; gk; v) = ultj(gi) gil
j(gi) � ultj(gk) gkl
j(gk) = Xg2Ghggwith lt(hgg) � u for g 2 G.Proof. Suppose V (j; gi; gk) = fv1; � � � ; vlg. Thenu =X� p�v�;where p� 2 K[�j ℄. Sin
e p� = P� a����� , where a�� 2 Kand ��� 2 �j , it follows thatu =X�;� a��(���v�): (�)Note that u and ���v� are terms in �jE and we 
an rewritethe right hand side of the equation (*) su
h that the terms���v� are distin
t. Then we see that there is a unique a�� =

1 and all others are zero. So u = �v for a � 2 �j andv 2 V (j; gi; gk).Now if S(j; gi; gk; v) 
an be redu
ed to 0 by G thenS(j; gi; gk; v) = Xg2Gh0ggand lt(h0gg) � lt(S(j; gi; gk; v)) � v for g 2 G. Therefore�S(j; gi; gk; v) = Xg2G(�h0g)g = Xg2Ghgg;where hg = �h0g. By Lemma 3.2 (i), lt(�h0gg) = �w for aterm w of h0gg. Then lt(hgg) = lt(�h0gg) = �w. Thereforew � lt(h0gg) � v and � 2 �j imply that �w � �v = u.Theorem 3.2. (Generalized Bu
hberger Theorem) Let Fbe a free D-module and � be a generalized term order on �E,G be a �nite subset of Fnf0g and W be the submodule in Fgenerated by G. Then G is a Gr�obner basis of W if and onlyif for all �j , for all gi; gk 2 G and for all v 2 V (j; gi; gk),the S-polynomials S(j; gi; gk; v) 
an be redu
ed to 0 by G.Proof. If G is a Gr�obner basis of W , sin
e S(j; gi; gk; v)is a element of W , then it follows from Proposition 3.2 thatS(j; gi; gk; v) 
an be redu
ed to 0 by G.Now let G be a �nite subset of Fnf0g and W be thesubmodule in F generated by G. Suppose that for all �j , forall gi; gk 2 G, and for all v 2 V (j; gi; gk) the S-polynomialsS(j; gi; gk; v) 
an be redu
ed to 0 by G. We have to showfor every f 2 Wnf0g there are � 2 �, g 2 G su
h thatlt(f) = lt(�g). Sin
e W is generated by G, we havef = Xg2Ghggfor some fhggg2G � D.Let u = max�flt(hgg) j g 2 Gg. We may 
hoose thefamily fhg j g 2 Gg su
h that u is minimal, i.e. if f =Pg2G h0gg then u � max�flt(h0gg) j g 2 Gg. Note thatu � �g for all terms � of hg and all g 2 G by Proposition3.1.If lt(f) = u = lt(hgg) for some g 2 G, then Proposition 3.1implies that there is a term � of hg su
h that lt(f) = lt(�g).Therefore the proof would be 
ompleted. Hen
e it remainsto show that lt(f) � u 
annot hold.Suppose lt(f) � u and let B = fg j lt(hgg) = u � lt(f)g.Then, by Proposition 3.1, there is a unique term �g of hg,g 2 B, su
h that u = lt(�gg) � lt(�gg) for any terms �g 6= �gof hg. Let 
g be the 
oeÆ
ient of �g in hg . We havef =Pg2B hgg +Pg=2B hgg=Pg2B 
g�gg +Pg2B(hg � 
g�g)g +Pg=2B hgg;(3:3)where all terms appearing in the last two sums are less thanu w.r.t. �.Suppose vg is the term of g su
h that u = lt(�gg) =�gvg � �gv for any terms v 6= vg of g, a

ording to Lemma3.2(i). Let dg be the 
oeÆ
ient of vg in g. Then by Lemma3.1,Pg2B 
g�g = Pg2B 
g�gdg( gdg )= Pg2B 
g(d0g�g + �g)( gdg )= Pg2B 
gd0g�g( gdg ) +Pg2B 
g�g( gdg )(3:4)



for some elements d0g 2 K and �g 2 D with all terms ap-pearing in the last sum being less than u w.r.t. �.Note that u appears only inPg2B 
gd0g�g( gdg ) =Pg2B 
gd0g�gvg +Pg2B 
gd0g�g( gdg � vg) =(Pg2B 
gd0g)u+Pg2B 
gd0g�g( gdg � vg)and all terms appearing in the last sum are less than u. Sin
elt(f) � u it follows that Pg2B 
gd0g = 0. Denote �g( gdg ) byrg. Then by Lemma 3.4,Xg2B 
gd0g�g( gdg ) = Xg2B(
gd0g)rg =Xi;k bi;k(rgi � rgk) (3:5)for some gi; gk 2 B.Sin
e rgi � rgk = �gi ( gidgi )� �gk ( gkdgk )and �givgi = �gkvgk = u 2 �jE for an �j , it follows fromLemma 3.3 that vgi = ltj(gi), vgk = ltj(gk), dgi = l
j(gi),dgk = l
j(gk), �gi = ultj(gi) , �gk = ultj(gk) and thenrgi � rgk = ultj(gi) gil
j(gi) � ultk(gk) gkl
j(gk)with lt(rgi � rgk ) � u.Note that for all �j , for all gi; gk 2 G, and for all v 2V (j; gi; gk) the S-polynomials S(j; gi; gk; v) 
an be redu
edto 0 by G. Then by Lemma 3.5, we havergi � rgk = Xg2G pgg (3:6)with lt(pgg) � u.Repla
e the �rst sum in the r.h.s. of (3.3) by (3.4), andrepla
e the �rst sum in the r.h.s. of (3.4) by (3.5), thenrepla
e rgi � rgk in the r.h.s. of (3.5) by (3.6). We getanother form of f =Pg2G h0gg and u � max�flt(h0gg) j g 2Gg, whi
h is a 
ontradi
tion to the minimality of u. This
ompletes the proof of the theorem.Example 3.4. If W is a submodule of F generated by a�nite set G and every g 2 G 
onsists of only one term,then G is a Gr�obner basis of W . In fa
t in this 
ase all S-polynomials S(j; gi; gk; v) are 0. By Theorem 3.2 this impliesthat G is a Gr�obner basis of W .Theorem 3.3. (Bu
hberger Algorithm) Let F be a freeD-module and � be a generalized term order on �E, G be a�nite subset of Fnf0g and W be the submodule in F gener-ated by G. For ea
h �j and f; g 2 Fnf0g let V (j; f; g) andS(j; f; g; v) be as in De�nition 3.6. Then by the followingalgorithm a Gr�obner basis of W 
an be 
omputed:Input: G = fg1; � � � ; g�g whi
h is a set of generators of WOutput: G0 = fg01; � � � ; g0�g whi
h is a Gr�obner basis of WBeginG0 := GWhile there exist f; g 2 Gi and v 2 V (j; f; g) su
h thatS(j; f; g; v) redu
es to r 6= 0 by GiDo Gi+1 := Gi [ frgIf Gi+1 = Gi then Gi+1 = G0End

Proof. By Theorem 3.2 we only have to show that thereis an i 2 N su
h that Gi+1 = Gi. Suppose there is no su
hi 2 N. In every step of the algorithm we get an r su
h thatlt(r) is not a multiple of any lt(�g), where � 2 � and g 2 Gi.So if lt(r) 2 �jE thenK(i)j = K[�j ℄hlt(�g) 2 �jE j � 2 �; g 2 Gii( K[�j ℄hlt(�g) 2 �jE j � 2 �; g 2 Gi+1i= K(i+1)jas K[�j ℄-submodules of Le2EK[�j ℄e. Therefore, for alli 2 N there is an m 2 N su
h thatK(i)j ( K(i+m)j :This, however, is impossible be
ause of the Noetherianity ofK[�j ℄.Example 3.5. Let F and the generalized term order on� be as in Example 3.3. Let G = fg1; g2; g3g = f�42+1; �21�1; �21�42 + 1g. Then G is a Gr�obner basis of the submoduleW generated by G. To prove this, we must show that allS-polynomials of G 
an be redu
ed to 0 by G.Following the method des
ribed in Example 3.3, we haveV (0; g1; g2) = f�21�42g, V (1; g1; g2) = f��11 �32g, V (2; g1; g2)=f�1��12 g. SoS(0; g1; g2; �21�42) = �21g1 � �42g2 = �21 + �42 = g1 + g2;S(1; g1; g2; ��11 �32) = ��11 ��12 g1 + ��11 �32g2 =��11 ��12 + �1�32 = (��11 ��12 )g3;S(2; g1; g2; �1��12 ) = �1��12 g1 � ��11 ��12 g2 =��11 ��12 + �1�32 = (��11 ��12 )g3:Furthermore, V (0; g1; g3) = f�21�42g, V (1; g1; g3) = f��11 �32g,V (2; g1; g3) = f��12 g. SoS(0; g1; g3; �21�42) = �21g1 � g3 = �21 � 1 = g2;S(1; g1; g3; ��11 �32) = ��11 ��12 g1 � ��11 �32g3 =��11 ��12 � �1�72 =(��11 ��12 )g3 � �1�32g1;(note that the r.h.s. of this equation satis�es the 
onditionin Theorem 3.1 (i), i.e. lt(higi) � lt(S))S(2; g1; g3; ��12 ) = ��12 g1 � ��12 g3 = �32 � �21�32 = ��32g2:Finally, V (0; g2; g3) = f�21�42g, V (1; g2; g3) = f��11 g,V (2; g2; g3) = f�1��12 g. SoS(0; g2; g3; �21�42) = �42g2 � g3 = ��42 � 1 = �g1;S(1; g2; g3; ��11 ) = ��11 g2 � ��11 g3 = �1�42 + �1 =�1g1;S(2; g2; g3; �1��12 ) = ��11 ��12 g2 � �1��12 g3 =���11 ��12 � �31�32 =��11 ��12 g3 + �1�32g2:The r.h.s. of this equation also satis�es the 
ondition inTheorem 3.1 (i). So, by Theorem 3.2, G is a Gr�obner basisof W .
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