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ABSTRACT

We extend the theory of Grébner bases to difference-differen-
tial modules. The main goal of this paper is to present and
verify algorithms for constructing Grobner bases for such
difference-differential modules. To this aim we introduce
the concept of generalized term order on N™ x Z™ and on
difference-differential modules.

Categories and Subject Descriptors

1.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms— Algebraic algorithms

General Terms
Algorithms

Keywords
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1. INTRODUCTION

The usefulness of the classical Grobner basis method for the
algorithmic solution of problems in polynomial ideal theory
is well-known. The results of Buchberger [2], [3] on Grébner
bases in polynomial rings have been extensively described,
for instance by Becker and Weispfenning [1], Cox et al. [4],
and Winkler [14]. The theory has been generalized by many
authors to non-commutative domains, especially to mod-
ules over various rings of differential operators. Galligo [5]
first gave the Grébner basis algorithm for the Weyl algebra
Am (K) of partial differential operators with coefficients in
a polynomial ring over the field K. Mora [9] generalized
the concept of Grobner basis to non-commutative free al-
gebras. Kondrateva et al. [7] described the Grébner basis
method for differential and difference modules. Noumi [10]
and Takayama [13] formulated Grébner bases in Ry, the ring
of differential operators with rational function coefficients.
Oaku and Shimoyama [11] treated Dyg, the ring of differen-
tial operators with power series coefficients. Insa and Pauer
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[6] presented a basic theory of Grobner bases for differen-
tial operators with coefficients in a commutative Noetherian
ring. It has been proved that the notion of Grébner basis
is a powerful tool to solve various problems of linear partial
differential equations.

On the other hand, for some problems of linear difference-
differential equations such as the dimension of the space of
solutions and the computation of difference-differential di-
mension polynomials, the notion of Grobner basis for the
ring of difference-differential operators is essential. Whereas
Grobner bases in rings of differential operators are defined
with respect to a term order on N* x N* or N*, this ap-
proach cannot be used for the ring of difference-differential
operators. We need to treat orders on N x Z". Pauer and
Unterkircher [12] considered Grébner bases in Laurent poly-
nomial rings, but their approach is limited to the commu-
tative case. Levin [8] introduced characteristic sets for free
modules over rings of difference-differential operators. Such
characteristic sets depend on a specific order on N™ x Z".
But this order is not a term order in the sense of the theory
of Grébner bases.

The main purpose of this paper is to give a new approach
to the computation of a Grébner basis for an ideal in (or
a module over) the ring of difference-differential operators.
Our notion of Grébner basis is based on a generalized term
order on N™ x Z". In Section 2 the generalized term order
and its properties are discussed and some examples are pre-
sented. In Section 3 we introduce the reduction algorithm,
the definition of the Grébner basis and the S-polynomials,
as well as the Buchberger algorithm for the computation of
Grdbner bases. Further details can be found in [15].

Throughout the paper, N, Z, Z4, Z_ and Q denote the
sets of natural numbers, integers, nonnegative integers (i.e.
natural numbers), nonpositive integers, and rational num-
bers, respectively. By a ring we always mean an associative
ring with a unit. By the module over a ring A we mean a
unitary left A-module.

DEFINITION 1.1. Let R be a commutative Noetherian ring.
Let A = {61, ,0m} be a set of derivations on R and
¥ = {o1,---,0n} a set of automorphisms of R, such that
a(z) € R and a(B(z)) = Bla(z)) for any a,f € AU and
x € R. Then R is called o difference-differential ring with
the basic set of derivations A and the basic set of automor-
phisms X, or shortly a A-X-ring; if R is a field, then it is
called a A-Y-field.

This notion of difference-differential ring is motivated by
the following example.



ExXaMPLE 1.1. Let R = K[z1,...,x,] for a field K, §; =
0/0x; and o; the automorphism which maps x; to x; —
1. Then R is a A-X-ring for A = {b1,...,0n} and ¥ =
{o1,...,0n}.

Let R be a A-Y-ring. By A™ we denote the free commu-
tative semigroup consisting of all words over A of the form
oF1 . 5km where (ki,...,km) € N™.

By © we denote ¥ together with its inverses, i.e. & =
SU{s7!' | o € £}. By & we denote the free commuta-
tive semigroup consisting of all words over ¥ of the form
ot ol where (I1,...,l,) € N*. By ©* we denote the
free commutative group consisting of all words over 3 of the
form o't ... oln | where (I1,...,1,) € Z™

By A = (AX)* we denote the free commutative semigroup

consisting of all words over A and ¥ of the form
A=0yt - prot o (1.1)

where (k1,...,kmn) € N® and (I1,...
A are called terms.

,In) € Z". Elements of

DEFINITION 1.2. Let R be a A-X-ring and the semigroup
A be as above. Then an expression of the form

>, (1.2)

AEA

where ax € R for all X\ € A and only finitely many co-
efficients ax are different from zero, is called a difference-
differential operator (or shortly a A-X-operator) over R.
Two A-Y-operators 5, .p axA and 3, o, baX are equal if
and only if ax = by for all X € A.

The set of all A-Z-operators over a A-Y-ring R is a ring
with the following fundamental relations

Z/\eAaXA+ZAeAbX>‘ ZAeA(a* +bA)A,
a(Poaea @A) = Dyealaarn),
(ZAeAa*A)M = Yeaa(An), (1-3)

da = ad + (a), ca = o(a)o,

for all ax,bn e R, A, p €N, a€R, €N o€ $. Note that
the elements in A and ¥ do not commute with the elements
in R, and therefore the terms A € A do not commute with
the coefficients a) € R.

DEeFINITION 1.3. The ring of all A-X-operators over a A-
3-ring R s called the ring of difference-differential operators
(or shortly the ring of A-X-operators) over R. It will be
denoted by D. A left D-module M 1is called a difference-
differential module (or a A-3-module). If M 1is finitely
generated as a left D-module, then M is called a finitely
generated A-Y-module.

When ¥ = @), D will be the ring of differential opera-
tors R[01,+ ,0m]. If the coefficient ring R is the polyno-
mial ring in z1,...,2m over a field K and §; = 9/0x; for
1 <4 < m, then D will be the Weyl algebra A,,(K). So
A-¥-modules are generalizations of modules over rings of
differential operators. But in the ring of A-X-operators the
terms are of the form (1.1) and the exponent in o1, -+ ,0p
is (I1,--+ ,ln) € Z™. The notion of term order, as commonly
used in Grébner basis theory, is no longer valid. We need to
generalize the concept of term order.

2. GENERALIZED TERM ORDER

First we consider decompositions of the group Z".

DEFINITION 2.1. Let Z™ be the union of finitely many

subsets Z7, i.e. Z" = U;C:I 77}, where Z7, j = 1,--- ,k,

satisfy the following conditions:

(1) (0,---,0) € Z}, and Z} does not contain any pair of
invertible elements ¢ = (c1,- - ,cn) # 0 and —c =
(_Cla Ty _CTL);

1) Z7 is isomorphic to N* as a semigroup,
J g
(111) the group generated by Z7 is Z".

Then{Z7} | j=1,---,k} is called an orthant decomposition
of Z™ and Z7 1is called the j-th orthant of the decomposition.

EXAMPLE 2.1. Let {Z%, - ,Z3x} be all distinct Carte-
sian products of n sets each of which is either Z4+ or Z_.
Then this is an orthant decomposition of Z"™. The set of
generators of Z7 as a semigroup is

{(Clzoa"' 70)7(0a02a0a"' ao)a"' a(oa"' 7070"1)}’
where c; s either 1 or =1, 5 =1,--- ,n. We call this de-
composition the canonical orthant decomposition of Z".

ExXAMPLE 2.2. Consider n € N. Fori=1,...,n let

0 fori#j

Zi = (zi,j)lgjgn,where Zig = {1 f . L
orit=yj

Furthermore let zo = (20,5)1<j<n, where zg; = —1.
Let Zg be the sub-semigroup of Z" generated by

{zi |1 <i<n},

and for 1 < j <n let Z7 be the sub-semigroup of Z" gener-
ated by

{zo} U{zi|1<i<mandid#j}.

Then {Z§,Z23, - ,Z%} is an orthant decomposition of Z™.
For n =2, we have

Zs={(a,b)|la >0,b>0,a,b € Z},
73 ={(a,b)|a < 0,b>a,a,b €L},
735 ={(a,b)|b < 0,a >b,a,b € Z}.

DEFINITION 2.2. Let {Z} | j = 1,--- ,k} be an orthant
decomposition of Z". Then a = (k1,-++ ,km,l1,--+ ,ln) and
b= (r1i, - yTm,81, - ,8n) of N* x Z™ are called similar
elements, if the n-tuples (l1,--- ,ln) and (51, ,$n) are in
the same orthant Z7 of Z".

DEFINITION 2.3. Let {Z} | j = 1,--- ,k} be an orthant
decomposition of Z™. A total order < on N™ X Z" is called a
generalized term order on N™ X Z"™ w.r.t. the decomposition,
if the following conditions hold:

(i) (0,---,0) is the smallest elements in N™ x Z",

(ii) if a < b, then a +c < b+ ¢ for any ¢ similar to b.



EXAMPLE 2.3. (a) Let {Z}|j=1,---,2"} be the canon-
ical orthant decomposition of Z™ defined in Example 2.1. For
every a = (ki, - ,km,l1,  ,ln) EN" X Z" let

la] =k +- Fkm + |0+ + |l

For two elements a = (k1,-++ , km,l1, -+ ,In) and

b= (71, " ,"m, 81, - ,8n) of N* x Z" define a < b if and
only if the (1 +m + n)-tuple (|a|, k1, -  km,l1, -+ ,ln) is
smaller than (|b],r1, ++ ,Tm, 81, ,8n) w.r.t. the lexico-
graphic order on N+t x Z™. Then "<7” is a generalized
term order on N™ x Z™.

(b) Let the orthant decomposition of Z" be as in Example

2.1. For every a = (ki, -+ ,km,l1,- ,ln) E N X Z" lel
lals =k, lals = [14]-
j=1 j=1
For two elements a = (k1,- -+ , km,l1, -+ ,In) and
b= (71, " ,"m, 81, - ,8n) of N* x Z" define a < b if and
only if the (2 4+ m + 2n)-tuple

7kma|ll‘a"' 7|ln|7llz"' 7ln)
is lexicographically smaller than
(|b|1a |b|21T11 T

Then "<” is a generalized term order on N™ x Z™.
(c) Let {Z;n), j=0,1,---,n} be the orthant decomposition
of Z™ defined in Example 2.2. For every element

(‘a‘lz ‘ab:kla t

,Tm,|81|,"' 7‘571‘1511"' ,Sn).

a=(ki, - km,l1, - ,ln) EN* X Z" let

lla]l = — min{0,l1, -+ ,ln} .
For two elements a = (k1,- -+ , km,l1,-+ ,In) and
b= (71, " ,"m, 81, - ,8n) of N x Z" define a < b if and
only if the (1 +m + n)-tuple (||all, k1, km,l1,- - ,1n) i8
lexicographically smaller than (||bl|,r1, -+ ;Tm,S1, " ,8n).

Then <" is a generalized term order on N™ x Z™.

In order to investigate A-Y-modules, we need to extend
the notion of generalized term order to N x Z" x E, where
E ={e1, - ,eq} is a set of generators of a module.

DEeFINITION 2.4. Let {Z7 | j = 1,--- ,k} be an orthant
decomposition of Z". Let E = {e1, - ,eq} be a set of q
distinct elements. A total order < on N™ x Z" x E is called
a generalized term order on N™ X Z" x E w.r.t. the decom-
position, if the following conditions hold:

(i) (0,---,0,€;) is the smallest element in N™ X Z™ x {e; }
for any e; € F,

(1) if (a,e;) < (b,ej), then (a+c,e;) < (b+c,e;) for any
¢ similar to b.

There are many ways to extend a generalized term order
on N™ XZ" to N™ XZ" x E. Of course such an extended term
order may also be defined directly. Some typical examples
are shown below.

ExXAMPLE 2.4. Let the orthant decomposition of Z"™ and
the generalized term order <" on N™ X Z™ be as in Example
2.3(b). Given an order "<g” on E = {e1, - ,eq}, for two
elements

(aaei) (klv"'akmvllv"'
(b76j) = (7‘1,"'77'117,7317"'

yn,€i) and
,5n76j)

of N x Z™ x E define:
(a,ei) <1 (bej) <= a<b or (a=0b and e; <g e;);
(a,ei) <2 (byej) < e; <pe; or (ei=e€; and a <b);

(aaei) <3 (ba 6]‘) —
(|a|17|a|21eiakla"' akmv‘ll‘a"' 1|ln‘1lla"' 7ln)
< (‘b‘lz‘bb:ej:rl:"' ,Tm,|31‘,"' ,|3n|331,"' ,Sn)
in lexicographic order.

Then "<17”, "<27,"<3” are generalized term orders on N™ x
Z" x E.

We say that "<1” is the TOP (i.e. term-over-position)
extension of "<” and "<2” is the POT (i.e position-over-
term) extension of "<”. ”"<3” is a generalized term order
defined directly.

LEmMMA 2.1, Let {Z} | j = 1,--- ,k} be an orthant de-
composition of Z™ and "<” be a generalized term order on
N™ x Z™ with respect to the orthant decomposition. Then
every strictly descending sequence in N™ x Z" is finite. In
particular, every subset of N™ x Z" contains a smallest ele-
ment.

PROOF. Let a1 > a2 > as > --- be a strictly descending
sequence in N™ xZ". Since there are finitely many orthants,
without loss of generality we may assume that all a; are sim-
ilar elements, i.e. a; € N™ x Z7 for a fixed i. By Condition
(i) in Definition 2.1, N™ x Z? is isomophic to N™*" as a
semigroup. Define order <1 on N™T™ ag follows:

a<1b<f(a) = f(b),

where f is the isomophism from N™ x ZT to N®*" and < is
the generalized term order on N™ x Z™. Since < is a term
order on N™ x ZE"), it is easy to see <1 is a term order (in the
classical sense) on N™*™, Then the assertion of the Lemma

follows from the well-order property of the term order on
Nt 0O

COROLLARY 2.1. Given an orthant decomposition of Z"
and a generalized term order "<” on N™ x Z" x E, every
strictly descending sequence in N™ x Z"™ x E is finite. In
particular, every subset of N™ x Z™ x E contains a smallest
element.

PrOOF. Let a1 > as > a3 > -+ be a strictly descending
sequence in N™ x Z"™ x E. Since E is a finite set, we may
suppose that all a; are in N™ x Z" x {e;} for a fixed i. Then
the conclusion follows immediately from Lemma 2.1. O

3. GROBNER BASES IN FINITELY GEN-
ERATED DIFFERENCE-DIFFERENTIAL
MODULES

Let {Z} | j = 1,--- ,k} be an orthant decomposition of
Z™ and “<” be a generalized term order on N” x Z" w.r.t.
the ortant decomposition. Let A be the semi-group of terms
introduced in Section 1 in which the elements are of the form
(1.1). Since A is isomorphic to N™ x Z™ as a semigroup, the
order “<” defines an order on A; we also call it a generalized
term order on A.

Let K be a A-Y-field and D be the ring of A-Y-operators
over K, and let F be a finitely generated free D-module (i.e.
a finitely generated free difference-differential-module) with
a set of free generators F = {e1,-+- ,eq}. Then F can be



considered as a K-vector space generated by the set of all
elements of the form Ae;, where A € A and i = 1,....q.
This set will be denoted by AE and its elements will be
called “terms” of F. If “<” is a generalized term order on
N™ x Z™ x E then “<” obviously induces an order on AF,
which we also call a generalized term order.

It is clear that every element f € F' has a unique repre-
sentation as a linear combination of terms

f=aihej +- +aqlaej, (3.1)
for some nonzero elements a; € K (i = 1,--- ,d) and some
distinct elements Aiej,, -, A¢ej, € AE. If a term Ae; ap-

pears with nonzero coefficient in the representation (3.1) of

f, then it is called a term of f. If (ki,- -, km,l1, -+ ,ln)
and (r1, -+ ,Tm, 81, ,Sy) are similar elements in N™ x Z"
then the two terms \; = 5f1 ---5,’“,{" alll ---ai{‘ and )\

it amalt - in A are also called similar. Tf A, \2 €
A are similar, then the two terms v = Aie; and v = \se; €
AF are also called similar.

DEFINITION 3.1. Let A\ = 651 ... gkmalt . aln and Xy =

it amalt - agt be two elements in A. If they are sim-
ilar and vy < ky, |sv| < || forpu=1,--- m,v=1,--- ,n,
then A1 is called o multiple of Ao and this relation is de-
noted by Xa|A1. If Aa|A1 and i = j then u = Aie; is called a
multiple of v = Xse; and this relation is denoted by v|u.

DEFINITION 3.2. Let < be a generalized term order on
AE, f € F be of the form (3.1). Then

16(f) = max{Ase;; i =1, ,d}

is called the leading term of f. If Njej; = It(f), then a; is
called the leading coefficient of f, denoted by lc(f).

Now we are going to construct the division algorithm in
the difference-differential module F'. First we collect some
properties of relating multiplication of terms to the ordering.
In what follows we always assume that an orthant decom-
position of Z™ is given as well as a generalized term order <
w.r.t. this decomposition.

DEFINITION 3.3. Let {Z] | j=1,...,k} be an orthant
decomposition of Z™. Then the subset A; of A,

A==l alr | () €2)

18 called the j-th orthant of A. Let F' be a finitely generated
free D-module and AE be the set of terms of F. Then

A]'E = {)\e,' | A E Aj,e,' S E'}
is called the j-th orthant of AE.

Obviously, two elements in A or AE are similar if and only
if they are in the same orthant. So from Definition 2.3, if <
is a generalized term order on A and £ < A, then n& < n\
holds for any 7 in the same orthant as A.

LEMMA 3.1. Let A € Aa € K, and < be a generalized
term order on AE C D. Then

Ao =a' X+ ¢,

where a' = o(a) for some o € ¥*. If a # 0 then also a’ # 0.
Furthermore, ¢ € D with 1t(§) < X\ and all terms of & are
similar to \.

Note that for a generalized term order < we cannot expect
At(f) = lt(Af) unless the leading term 1t(f) = ne; of f is
such that 7 is similar to .

LEMMA 3.2. Let F be a finitely generated free D-module
and 0 # f € F. Then the following hold:

(i) If X € A, then 1t(\f) = \-u for a unique term u of f.
(11) If16(f) € AjE then for any X € A;

It(Af) =X-1t(f) € AjE.
LEMMA 3.3. Let F' be a finitely generated free D-module

and 0 # f € F. Then for each j, there exists some X € A
and a unique term wu; of f such that

It(Af) = X u; € A;E.
We will write lt;(f) for this term u;.
IfheD, fe€F, thenhf =737, airAiug for some ; € A
and uy € AFE, some of which might not be terms of h and
f. Tt would be problematic if It(hf) < Ajur might occur

for some \; and ug in hf. The following proposition asserts
that this undesirable situation cannot occur.

PROPOSITION 3.1. Let 0 # f € F, 0 # h € D. Then
It(hf) = max<{Aiur} where X\; are terms of h and uy are
terms of f. Therefore It(hf) = X - u for a unique term X of
h and a unique term u of f.

Now we are ready to introduce the concept of “reduction”,
which is central in the theory of Grébner bases.

THEOREM 3.1. Let f1,---, fp € F\ {0}. Then every g €

F can be represented as
g=hifi+---+hpfp+r (3.2)
for some elements h1,--- ,hp € D and r € F such that
(i) hi =0 orlt(hifi) < W(g) fori=1,---,p,
(1i) r =0 orlt(r) is not a multiple of any lt(N\f;) for X € A,

i=1,---,p.
ProoF. The elements hi,--- ,h, € D and r € F can
be computed as follows: first set » = ¢g and h; = 0 for

t=1,...,p. Suppose r # 0, i.e.
r=lc(r)lt(r) + 7,
and lt(r) is a multiple of 1t(\;f;) for an element \; € A.

Suppose 1t(\; fi) € A;E. Then there exists an element 1 €
A;j such that

lt(T) =n- lt(Alf,)
By Lemma 3.2.(ii), lt(n - X\; fi) = - 1lt(\i fi) = 1t(r). So
n-Xifi = cin-le(Ni fi) + &, de. cnlb(Nifi) =n- N fi— &,
where ¢; =lc(n- \ifi) and 16(&;) < i - 1t(\; fi). Therefore
r= M(n&ﬁ &)+ 7= Mnkiﬁ + (7 — Mfi)-

Ci Cq Ci

!

Now we may replace r by v and h; by h; + lcc(—_T)n)\i. We
continue this process as long as r # 0 and 1t(r) is a multiple
of some 1t(\; f;). Since in each step we have

6(r') < 1t(n - Nifi) 2 1t(r) 2 1t(g),



by the Corollary to Lemma 2.1, the algorithm above termi-
nates after finitely many iterations. O

Observe that by Proposition 3.1 the statement in part (i)
of Theorem 3.1 means that Au < lt(g) for all terms X\ of h;
and all terms u of f;. The r is by no means unique.

DEFINITION 3.4. Let f1,...,f, € F\ {0}, g € F. Sup-
pose that equation (3.2) holds and the conditions (i), (ii) in
Theorem 3.1 are satisfied. If r # g we say g can be reduced
by {fi, -+, fp} tor. In this case we have 1t(r) < 1t(g) by the
proof of Theorem 3.1. In the case of r = g and h; = 0 for
i=1,---,p, we say that g is reduced w.r.t. {f1, -+, fo}.

The following example illustrates the reason for Condition
(ii) in Theorem 3.1.

EXAMPLE 3.1. Let K = Q(z1,2), D = K[81, 8, 0,7 '],
where 01, d2 are the partial derivatives w.r.t. xi, T2, Te-
spectively, and « is an automorphism of K. So D is the
{61,02}—{a}-ring over the coefficient field Q(z1, x2). Choose
the generalized term order on N* X Z as in Ezample 2.3 (a),
i.e.

u=0M20l <0 =0710120° =
(lull, ks ko, 1) <iew (0]l 71,72, 8),

where ||ul| = k1 + k2 + |I|. Let

g=6a"?+8a’, f=6da'+a.

Then
g= 510 248502 = a71(51a71+a)+(52a2—1) = a71f+r1.

Although 1t (r1) = 62a? is not any multiple of 1t(f) = 510",
we can find X = daa such that 1t(r1) = WW(Af) = 16(6162 +
52@2). Therefore

g=a 'f+6af+ (=602 —1)=(a ' +da)f +ra

Now 7o satisfies the condition (i1) in Theorem 3.1. So g is
reduced by f to ra.

DEFINITION 3.5. Let W be a submodule of the finitely
generated free D-module F' and < be a generalized term or-
der on AE. Let G = {g1,-- ,g90} C W\{0}. Then G is
called a Grobner basis of W (w.r.t. the generalized term
order <) if and only if for every f € W\ {0}, It(f) is a
multiple of 1t(A\g;) for some X € A, g; € G. If every element
of G is reduced with respect to the other elements of G, then
G 1s called o reduced Grobner basis of W.

PROPOSITION 3.2. Let G be a finite subset of W \ {0}.
The following assertions hold:

(i) G is a Grébner basis of W if and only if every f € W
can be reduced by G to 0. So a Grébner basis of W
generates the D-module W .

(ii) If G is a Grébner basis of W, f € F, then f € W if
and only if f can be reduced by G to 0.

(ii1) If G is a Grébner basis of W, then f € W is reduced
w.r.t. G if and only iof f = 0.

PRrROOF. (i) If G is a Grébner basis of W and f € W, then
by Theorem 3.1 f can be reduced by G to r with 1t(r) not
being a multiple of any lt(\g) for A € A,g € G. Sincer € W
and G is a Grobner basis for W, we must have r = 0.

On the other hand, if every f € W can be reduced by ¢
to 0, then f = dec hgg. By Proposition 3.1, there is a
g € G such that It(f) = maxgea{lt(hgg)} = Au for a term
of hy and a term of g. So lt(f) = lt(Ag). By Definition 3.5
G is a Grobner basis of W.

(ii) and (iii) follow easily from Theorem 3.1 and Definition
3.5.0

ExXAMPLE 3.2. If W is generated by just one element g €
F\ {0}, then any finite subset G of W\ {0} containing g is
a Grébner basis of W. In fact, 0 £ f € W implies f = hg
for some h € D\ {0}. By Proposition 3.1, It(f) = lu =
max<{\iur} for a term X of h and a term w of g. Then
It(f) = lt(\g). By Definition 3.5, G is a Grobner basis of
w.

Now we will describe the Buchberger algorithm for com-
puting a Grobner basis of a submodule W of F. This re-
quires a suitable definition of the concept of S-polynomial.

DEFINITION 3.6. Let F be a finitely generated free D-
module and f,g € F \ {0}. For every A; let V(j, f,g) be
a finite system of generators of the K[Aj]-module

kia ) EONENS) € AjE, N € A) N
&1 {6(ng)lt(ng) € AjE.n € A).

Then for every generator v € V (4, f,9g),

_ v f v g
It (f)le;(f)  1ti(g) lej(g)

is called an S-polynomial of f and g with respect to j and v.

S(j7f7g7v)

The K[A;]-module considered in Definition 3.6 is a “mono-
mial module”, i.e. it is generated by elements containing
only one term. Such a module always has a finite “mono-
mial basis”, i.e. every basis element contains only one term.
In the following we assume that V' (j, f,¢) is such a finite
monomial basis.

The computation of V (4, f, ¢) involves the generalized term
order on AE. Pauer and Unterkircher [12] have investi-
gated V (34, f, g) for commutative Laurent polynomial rings
and have given algorithms for some important cases. Their
results are still valid for difference-differential modules.

EXAMPLE 3.3. Let FF = D = K[61,62,a1,a7", as, a5’
and K = Q(z1,x2), where §1, 02 are the partial derivatives
w.r.t. x1 and x2, respectively, and a1, as are two automor-
phism on K. Choose the generalized term order on N* x Z?
as in Ezample 2.5(c), i.e.

ki ska 1 1
u=194;"6"ata <v=141"02a7" a5’

‘=)(||“||7k17k2711752) <lex (||U||,7‘1,1"2751,52),

where ||ul| = —min(0,11,12).

Let [ = al_2 — 02, 9g=01+ a%. Note that the orthants of
A are Ao, A1, A2 as described in Example 2.2 forn = 2. It
is easy to see that

{INeA | I6(Nf) € Ao} = Aoal , {n €A |1t(ng) € Ao} = Ao

and

{lt(Af) € Ao | X € A} = Agbaad,
{lt(ng) € Ao | 1 € A} = Aoé1.



Then V (0, f,g) = {vo} = {6162a1} and by Definition 3.6,
S(0, f,9,v0) = 6101 f + 201 = 61 + G201 0.

Similarly we have

ANeA|(Af)e M} =MNar, {n€EA|lt(ng) e M} =M

and

{It(A\f) € A1 | A € A} = Arag !,
{It(ng) € A1 | n € A} = A161.
Then V (1, f,g) = {v1} = {01a7"'} and
S, f,g,v1) =diarf —a; tg = —0idrar — o s,
Finally,

{NEA | It(Nf) € As} = Asa?,
{It(\f) € Aa | X € A} = Asdaad,
{lt(ng) € A2 | n € A} = A2dray .

Then V (2, f,g) = {va} = {61620c103 "} and
S(2, f,g,v2) = ranay  f+da0nay ' g = 6107 ay’+oraias.

For the proof of the Generalized Buchberger Theorem we
need the following lemmas.

LEmMMA 3.4. Let fi,---
S a; =0, then

j=1
!
E a;rj =
j=1

for some b; € R.

i€ Fanday, - ,ap € K. If

Zb = fi+1)

PrOOF. Obviously

1
D=1 AT =
a1(r1 —r2) + (a1 + a2)(r2 — r3) + (a1 + a2 + as)(rs — ra)
+(a1 +az +---

|

+ai—1)(r—1 — 1) + (a1 + as + -+ @)

LEMMA 3.5. Let gi, gr € F and lt(Ag;) = lt(ngr) = u €
A;E, where A\, n € A. Then there exists ( € A; and v €
V(4,9i,9k), such that w = Cv. Therefore if G is a finite
subset of F\{0} and the S-polynomial S(j, gi, gr,v) can be
reduced to 0 by G then

CS(Jz gizgkav) =

u gi
— h
1t (g:) Ie; (97) zt]< =2 hay

geG
with lt(hgg) < u for g € G.
PRrROOF. Suppose V (4, gi, gx) = {v1,- -

u = E p#vﬂv
“w

where p, € K[A;]. Since py = 3, apvAuw, where ay, € K
and A., € Aj, it follows that

0= ). (+)

,u1}. Then

Note that u and A, v, are terms in Aj E and we can rewrite
the right hand side of the equation (*) such that the terms
Auvvy are distinct. Then we see that there is a unique a,, =

1 and all others are zero. So u =

CAS V(]vghgk)
Now if S(j, gi, gk, v) can be reduced to 0 by G then

=2 g
9€eG
and 1t(hyg) < 16(S(4, gi, gk, v)) < v for g € G. Therefore
Cs(jzgizgkzv) = Z(Ch;)g = Z hgg,
geG 9g€EG

where hy = (hy. By Lemma 3.2 (i), 16(Chyg) = ¢w for a
term w of hyg. Then lt(hgg) = 1t(Chyg) = (w. Therefore
w < lt(hyg) < v and ¢ € A; imply that (w < (v =u. O

Cv for a ¢ € Aj and

S J:glzgka

THEOREM 3.2. (Generalized Buchberger Theorem) Let F'
be a free D-module and < be a generalized term order on AFE,
G be a finite subset of F\{0} and W be the submodule in F'
generated by G. Then G is a Grobner basis of W if and only
if for all Aj, for all gi, gr € G and for all v € V (4, 9:, gk),
the S-polynomials S(j, gi, gk, v) can be reduced to 0 by G.

ProoF. If G is a Grébner basis of W, since S(4, i, gk, v)
is a element of W, then it follows from Proposition 3.2 that
S(4, gi, gk, v) can be reduced to 0 by G.

Now let G be a finite subset of F\{0} and W be the
submodule in F generated by G. Suppose that for all Aj, for
all g;, gr € G, and for all v € V (4, gi, g) the S-polynomials
S(4, gi, gk, v) can be reduced to 0 by G. We have to show
for every f € W\{0} there are A € A, g € G such that
It(f) = 1t(A\g). Since W is generated by GG, we have

f=Zhgg

geqG

for some {hg}gec C D.

Let v = max<{lt(hgg) | ¢ € G}. We may choose the
family {hy | ¢ € G} such that w is minimal, ie. if f =
Ygec hgg then u < maz{lt(hyg) | ¢ € G}. Note that
u = Ag for all terms X\ of hy and all ¢ € G by Proposition
3.1.

Iflt(f) = u = lt(hyg) for some g € G, then Proposition 3.1
implies that there is a term X of hg such that 1t(f) = 1t(\g).
Therefore the proof would be completed. Hence it remains
to show that 1t(f) < u cannot hold.

Suppose 1t(f) < wand let B = {g | lt(hgg) = u = 1t(f)}.
Then, by Proposition 3.1, there is a unique term Ay of hg,
g € B, such that u =1t(\gg) = 1t(ngg) for any terms ng # Ag
of hg. Let ¢4 be the coefficient of Ay in hy. We have

[ =24enhe9+ 2 45 heg
=2 gen Mg + 2 geplhy >\9)9+Zg¢3 hg?: )
3.3
where all terms appearing in the last two sums are less than
u w.r.t. <.

Suppose vy is the term of g such that u = lt(A\gg) =
AgVg = Agv for any terms v # vy of g, according to Lemma
3.2(i). Let dg4 be the coefficient of vy in g. Then by Lemma
3.1,

deBCg/\g deBCgAgdg(Qg;)

deBcg(dl Ag +fg)('g_)

= deBcgd >\( )"‘deBcgfg( )
(3.4)



for some elements dy € K and & € D with all terms ap-
pearing in the last sum being less than u w.r.t. <.
Note that u appears only in

S en Codiho () =
deB ng’gAg”g + deB ng’gAg(% —g) =
(deB cqdg)u + deB ng’g/\g(ég; — )
and all terms appearing in the last sum are less than u. Since

1t(f) < u it follows that Y- 5 cody = 0. Denote \g(L ) by
rg. Then by Lemma 3.4,

chdA = (cody)

g€EB gEB

g€EB

g = E bik (rg;
ik

- ng-,) (3'5)

for some gi, gr € B.
Since

gi Jk
_rgkzkgi(d ) Agk(d )
9r

Tg;

i
9i

for an A;, it follows from

and Ag;vg; = g Vg, = u € AjE
), vgi = Itj(gr), dg; = lcj(gs),

Lemma 3.3 that vy, = It;(g

dg, = lcj(gr)s Ng; = ltj?gi)’ 9k = ltj(ugk) and then
g — Ty, = — gi U L
I T Ut (9) Lej(gi)  Itk(gw) Lej(gr)
with lt(rg, —rg,) < u.

Note that for all Aj, for all g;, gr € G, and for all v €
V (4, gi, gr) the S-polynomials S(j, gi, gk, v) can be reduced
to 0 by G. Then by Lemma 3.5, we have

> peg (3.6)

geG

Tg; —Tg, =

with lt(pgg) < u.

Replace the first sum in the r.h.s. of (3.3) by (3.4), and
replace the first sum in the r.h.s. of (3.4) by (3.5), then
replace ry, — ry, in the r.h.s. of ( 5) by (3.6). We get
another form of f =37 _, hgg and u > max< {lt(hyg) | g €
G}, which is a contradiction to the minimality of u. This
completes the proof of the theorem. [J

EXAMPLE 3.4. If W is a submodule of F' generated by a
finite set G and every g € G consists of only one term,
then G is a Grébner basis of W. In fact in this case all S-
polynomials S(34, gi, g, v) are 0. By Theorem 3.2 this implies
that G is a Grébner basis of W.

THEOREM 3.3. (Buchberger Algorithm) Let F be a free
D-module and < be a generalized term order on AE, G be a
finite subset of F\{0} and W be the submodule in F' gener-
ated by G. For each Aj and f,g € F\{0} let V(j, f,g) and
S(4, f,g,v) be as in Definition 3.6. Then by the following
algorithm o Gréobner basis of W can be computed:

Input: G = {g1, -
Output: G' = {g1, -
Begin

Go = G

While there exist f,g € Gi and v € V (4, f, g) such that

S(4, f,9,v) reduces tor #0 by G;

Do Giy1:=G; U {r}

If Giy1 =G, then Gy = el
End

,gu} which is a set of generators of W
, gy} which is a Grébner basis of W

Proor. By Theorem 3.2 we only have to show that there
is an ¢ € N such that Gi;y1 = G;. Suppose there is no such
i € N. In every step of the algorithm we get an r such that
1t(r) is not a multiple of any 1t(Ag), where A € A and g € G;.
So if 1t(r) € A; E then

AJ@ = Kk (lt(>\ )eA.E\AeA, gEG")
— [(J(L+1)

as K[A;]-submodules of @, ., K[Aj]e.
i € N there is an m € N such that

Therefore, for all

@) ¢ plitm)
K g Kk,

This, however, is impossible because of the Noetherianity of
K[A;]. O

ExXAMPLE 3.5. Let F' and the generalized term order on
A be as in Bzample 3.3. Let G = {g1, 92,93} = {as+1,a} —
1, 0305 + 1}. Then G is a Grébner basis of the submodule
W generated by G. To prove this, we must show that all
S-polynomials of G can be reduced to 0 by G.

Following the method described in Example 3.3, we have
V(OaglaQQ) = {a%a%}, V(laglaQQ) = {al_lag}; V(QaglaQQ):
{a1a5"}. So

algi —asgs = af +as = g1 + 9o,
ar'ay'gr+ailalg =

arloy !t +aiad = (a7 'ayt)gs,
aray g —ailay gy =

-1 -1 3 (-1 -1
a] oy +aras = (a] ay )gs.

S(Oa g1, 92, O[%O/Ql)
S(la g1, 92, al_la%)

3(2,91,92,041042_1)

Furthermore, V (0, g1, 93) = {a%aé}, V(l,g1,93) = {al_la‘;‘
V(2a91a93) = {O‘;l}' So

S(0,91,93,0%a3) = ajgi—gs=ai—1=gs,
5(1791793,a;1a§) = aflaglgl - 0;10393 =
al_lagl —aia) =
(a7 tayt)gs — aradgy,
(note that the r.h.s. of this equation satisfies the condition
in Theorem 3.1 (i), i.e. 1t(h;gi) < 1t(S))

S(2 —1y _ -1 -1 _ 3 2 3 3
(2,91,93, 05 ) = 3 g1 — @y g3 = @y — Q15 = —Q30s.

Finally, V(0, g2, 93) = {aias}, V(1,92,95) = {a7'},
V(2,92,93) = {onay '} So
S(Oa927937a%a3) = 0392—93:_0/21_1:_911
S(1, 92,93, a7") = a;'g2—ai'gs=aial +a1 =
a1g1,
S(2,92,93,0105") = ay'ay'gs—aia;'gs =

-1 1
—aojtay' —adal =

-1 _—1 3
Gy g3+ a1asgs.

The r.h.s. of this equalion also satisfies the condition in
Theorem 3.1 (i). So, by Theorem 3.2, G is a Griobner basis
of W.
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