
Gröbner Bases in Difference-Differential Modules

Meng Zhou
Department of Mathematics and LMIB

Beihang University
Beijing(100083), China

zhoumeng1613@hotmail.com

Franz Winkler
Research Institute for Symbolic Computation

Johannes Kepler University Linz
A-4040, Linz, Austria

Franz.Winkler@jku.at

ABSTRACTWe extend the theory of Gr�obner bases to di�erene-di�eren-tial modules. The main goal of this paper is to present andverify algorithms for onstruting Gr�obner bases for suhdi�erene-di�erential modules. To this aim we introduethe onept of generalized term order on Nm � Zn and ondi�erene-di�erential modules.
Categories and Subject DescriptorsI.1.2 [Symboli and Algebrai Manipulation℄: Algo-rithms|Algebrai algorithms
General TermsAlgorithms
KeywordsGr�obner basis, di�erene and di�erential operators
1. INTRODUCTIONThe usefulness of the lassial Gr�obner basis method for thealgorithmi solution of problems in polynomial ideal theoryis well-known. The results of Buhberger [2℄, [3℄ on Gr�obnerbases in polynomial rings have been extensively desribed,for instane by Beker and Weispfenning [1℄, Cox et al. [4℄,and Winkler [14℄. The theory has been generalized by manyauthors to non-ommutative domains, espeially to mod-ules over various rings of di�erential operators. Galligo [5℄�rst gave the Gr�obner basis algorithm for the Weyl algebraAm(K) of partial di�erential operators with oeÆients ina polynomial ring over the �eld K. Mora [9℄ generalizedthe onept of Gr�obner basis to non-ommutative free al-gebras. Kondrateva et al. [7℄ desribed the Gr�obner basismethod for di�erential and di�erene modules. Noumi [10℄and Takayama [13℄ formulated Gr�obner bases in Rn, the ringof di�erential operators with rational funtion oeÆients.Oaku and Shimoyama [11℄ treated D0, the ring of di�eren-tial operators with power series oeÆients. Insa and Pauer
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[6℄ presented a basi theory of Gr�obner bases for di�eren-tial operators with oeÆients in a ommutative Noetherianring. It has been proved that the notion of Gr�obner basisis a powerful tool to solve various problems of linear partialdi�erential equations.On the other hand, for some problems of linear di�erene-di�erential equations suh as the dimension of the spae ofsolutions and the omputation of di�erene-di�erential di-mension polynomials, the notion of Gr�obner basis for thering of di�erene-di�erential operators is essential. WhereasGr�obner bases in rings of di�erential operators are de�nedwith respet to a term order on Nn � Nn or Nn , this ap-proah annot be used for the ring of di�erene-di�erentialoperators. We need to treat orders on Nm �Zn. Pauer andUnterkirher [12℄ onsidered Gr�obner bases in Laurent poly-nomial rings, but their approah is limited to the ommu-tative ase. Levin [8℄ introdued harateristi sets for freemodules over rings of di�erene-di�erential operators. Suhharateristi sets depend on a spei� order on Nm � Zn.But this order is not a term order in the sense of the theoryof Gr�obner bases.The main purpose of this paper is to give a new approahto the omputation of a Gr�obner basis for an ideal in (ora module over) the ring of di�erene-di�erential operators.Our notion of Gr�obner basis is based on a generalized termorder on Nm � Zn. In Setion 2 the generalized term orderand its properties are disussed and some examples are pre-sented. In Setion 3 we introdue the redution algorithm,the de�nition of the Gr�obner basis and the S-polynomials,as well as the Buhberger algorithm for the omputation ofGr�obner bases. Further details an be found in [15℄.Throughout the paper, N, Z, Z+, Z� and Q denote thesets of natural numbers, integers, nonnegative integers (i.e.natural numbers), nonpositive integers, and rational num-bers, respetively. By a ring we always mean an assoiativering with a unit. By the module over a ring A we mean aunitary left A-module.Definition 1.1. Let R be a ommutative Noetherian ring.Let � = fÆ1; � � � ; Æmg be a set of derivations on R and� = f�1; � � � ; �ng a set of automorphisms of R, suh that�(x) 2 R and �(�(x)) = �(�(x)) for any �; � 2 � [ � andx 2 R. Then R is alled a di�erene-di�erential ring withthe basi set of derivations � and the basi set of automor-phisms �, or shortly a �-�-ring; if R is a �eld, then it isalled a �-�-�eld.This notion of di�erene-di�erential ring is motivated bythe following example.



Example 1.1. Let R = K[x1; : : : ; xn℄ for a �eld K, Æi =�=�xi and �i the automorphism whih maps xi to xi �1. Then R is a �-�-ring for � = fÆ1; : : : ; Æng and � =f�1; : : : ; �ng.Let R be a �-�-ring. By �� we denote the free ommu-tative semigroup onsisting of all words over � of the formÆk11 � � � Ækmm , where (k1; : : : ; km) 2 Nm .By ~� we denote � together with its inverses, i.e. ~� =� [ f��1 j � 2 �g. By �� we denote the free ommuta-tive semigroup onsisting of all words over � of the form�l11 � � ��lnn , where (l1; : : : ; ln) 2 Nn . By ~�� we denote thefree ommutative group onsisting of all words over ~� of theform �l11 � � ��lnn , where (l1; : : : ; ln) 2 Zn.By � = (�~�)� we denote the free ommutative semigrouponsisting of all words over � and ~� of the form� = Æk11 � � � Ækmm �l11 � � ��lnn ; (1:1)where (k1; : : : ; km) 2 Nm and (l1; : : : ; ln) 2 Zn. Elements of� are alled terms.Definition 1.2. Let R be a �-�-ring and the semigroup� be as above. Then an expression of the formX�2�a��; (1:2)where a� 2 R for all � 2 � and only �nitely many o-eÆients a� are di�erent from zero, is alled a di�erene-di�erential operator (or shortly a �-�-operator) over R.Two �-�-operators P�2� a�� and P�2� b�� are equal ifand only if a� = b� for all � 2 �.The set of all �-�-operators over a �-�-ring R is a ringwith the following fundamental relationsP�2� a��+P�2� b�� = P�2�(a� + b�)�;a(P�2� a��) = P�2�(aa�)�;�P�2� a���� = P�2� a�(��);Æa = aÆ + Æ(a); �a = �(a)�; (1:3)for all a�; b� 2 R, �; � 2 �, a 2 R, Æ 2 �, � 2 ~�. Note thatthe elements in � and ~� do not ommute with the elementsin R, and therefore the terms � 2 � do not ommute withthe oeÆients a� 2 R.Definition 1.3. The ring of all �-�-operators over a �-�-ring R is alled the ring of di�erene-di�erential operators(or shortly the ring of �-�-operators) over R. It will bedenoted by D. A left D-module M is alled a di�erene-di�erential module (or a �-�-module). If M is �nitelygenerated as a left D-module, then M is alled a �nitelygenerated �-�-module.When � = ;, D will be the ring of di�erential opera-tors R[Æ1; � � � ; Æm℄. If the oeÆient ring R is the polyno-mial ring in x1; : : : ; xm over a �eld K and Æi = �=�xi for1 � i � m, then D will be the Weyl algebra Am(K). So�-�-modules are generalizations of modules over rings ofdi�erential operators. But in the ring of �-�-operators theterms are of the form (1.1) and the exponent in �1; � � � ; �nis (l1; � � � ; ln) 2 Zn. The notion of term order, as ommonlyused in Gr�obner basis theory, is no longer valid. We need togeneralize the onept of term order.

2. GENERALIZED TERM ORDERFirst we onsider deompositions of the group Zn.Definition 2.1. Let Zn be the union of �nitely manysubsets Znj , i.e. Zn = Skj=1 Znj , where Znj , j = 1; � � � ; k,satisfy the following onditions:(i) (0; � � � ; 0) 2 Znj , and Znj does not ontain any pair ofinvertible elements  = (1; � � � ; n) 6= 0 and � =(�1; � � � ;�n),(ii) Znj is isomorphi to Nn as a semigroup,(iii) the group generated by Znj is Zn.Then fZnj j j = 1; � � � ; kg is alled an orthant deompositionof Zn and Znj is alled the j-th orthant of the deomposition.Example 2.1. Let fZn1; � � � ;Zn2ng be all distint Carte-sian produts of n sets eah of whih is either Z+ or Z�.Then this is an orthant deomposition of Zn. The set ofgenerators of Znj as a semigroup isf(1; 0; � � � ; 0); (0; 2; 0; � � � ; 0); � � � ; (0; � � � ; 0; n)g;where j is either 1 or �1, j = 1; � � � ; n. We all this de-omposition the anonial orthant deomposition of Zn.Example 2.2. Consider n 2 N. For i = 1; : : : ; n letzi = (zi;j)1�j�n;where zi;j = (0 for i 6= j1 for i = j :Furthermore let z0 = (z0;j)1�j�n, where z0;j = �1.Let Zn0 be the sub-semigroup of Zn generated byfzi j 1 � i � ng;and for 1 � j � n let Znj be the sub-semigroup of Zn gener-ated by fz0g [ fzi j 1 � i � n and i 6= jg:Then fZn0 ;Zn1; � � � ;Znng is an orthant deomposition of Zn.For n = 2, we haveZ20 = f(a; b)ja � 0; b � 0; a; b 2 Zg;Z21 = f(a; b)ja � 0; b � a; a; b 2 Zg;Z22 = f(a; b)jb � 0; a � b; a; b 2 Zg:Definition 2.2. Let fZnj j j = 1; � � � ; kg be an orthantdeomposition of Zn. Then a = (k1; � � � ; km; l1; � � � ; ln) andb = (r1; � � � ; rm; s1; � � � ; sn) of Nm � Zn are alled similarelements, if the n-tuples (l1; � � � ; ln) and (s1; � � � ; sn) are inthe same orthant Znj of Zn.Definition 2.3. Let fZnj j j = 1; � � � ; kg be an orthantdeomposition of Zn. A total order � on Nm �Zn is alled ageneralized term order on Nm�Zn w.r.t. the deomposition,if the following onditions hold:(i) (0; � � � ; 0) is the smallest elements in Nm �Zn,(ii) if a � b, then a+  � b+  for any  similar to b.



Example 2.3. (a) Let fZnj j j = 1; � � � ; 2ng be the anon-ial orthant deomposition of Zn de�ned in Example 2.1. Forevery a = (k1; � � � ; km; l1; � � � ; ln) 2 Nm �Zn letjaj = k1 + � � �+ km + jl1j+ � � �+ jlnj:For two elements a = (k1; � � � ; km; l1; � � � ; ln) andb = (r1; � � � ; rm; s1; � � � ; sn) of Nm � Zn de�ne a � b if andonly if the (1 + m + n)-tuple (jaj; k1; � � � ; km; l1; � � � ; ln) issmaller than (jbj; r1; � � � ; rm; s1; � � � ; sn) w.r.t. the lexio-graphi order on Nm+1 � Zn. Then "�" is a generalizedterm order on Nm �Zn.(b) Let the orthant deomposition of Zn be as in Example2.1. For every a = (k1; � � � ; km; l1; � � � ; ln) 2 Nm �Zn letjaj1 = mXj=1 kj ; jaj2 = nXj=1 jlj j:For two elements a = (k1; � � � ; km; l1; � � � ; ln) andb = (r1; � � � ; rm; s1; � � � ; sn) of Nm � Zn de�ne a � b if andonly if the (2 +m+ 2n)-tuple(jaj1; jaj2; k1; � � � ; km; jl1j; � � � ; jlnj; l1; � � � ; ln)is lexiographially smaller than(jbj1; jbj2; r1; � � � ; rm; js1j; � � � ; jsnj; s1; � � � ; sn):Then "�" is a generalized term order on Nm �Zn.() Let fZ(n)j ; j = 0; 1; � � � ; ng be the orthant deompositionof Zn de�ned in Example 2.2. For every elementa = (k1; � � � ; km; l1; � � � ; ln) 2 Nm �Zn letkak = �minf0; l1; � � � ; lng :For two elements a = (k1; � � � ; km; l1; � � � ; ln) andb = (r1; � � � ; rm; s1; � � � ; sn) of Nm � Zn de�ne a � b if andonly if the (1 +m+ n)-tuple (kak; k1; � � � ; km; l1; � � � ; ln) islexiographially smaller than (kbk; r1; � � � ; rm; s1; � � � ; sn).Then "�" is a generalized term order on Nm �Zn.In order to investigate �-�-modules, we need to extendthe notion of generalized term order to Nm �Zn�E, whereE = fe1; � � � ; eqg is a set of generators of a module.Definition 2.4. Let fZnj j j = 1; � � � ; kg be an orthantdeomposition of Zn. Let E = fe1; � � � ; eqg be a set of qdistint elements. A total order � on Nm �Zn�E is alleda generalized term order on Nm �Zn�E w.r.t. the deom-position, if the following onditions hold:(i) (0; � � � ; 0; ei) is the smallest element in Nm �Zn�feigfor any ei 2 E,(ii) if (a; ei) � (b; ej), then (a+ ; ei) � (b+ ; ej) for any similar to b.There are many ways to extend a generalized term orderon Nm�Zn to Nm�Zn�E. Of ourse suh an extended termorder may also be de�ned diretly. Some typial examplesare shown below.Example 2.4. Let the orthant deomposition of Zn andthe generalized term order "�" on Nm�Zn be as in Example2.3(b). Given an order "�E" on E = fe1; � � � ; eqg, for twoelements(a; ei) = (k1; � � � ; km; l1; � � � ; ln; ei) and(b; ej) = (r1; � � � ; rm; s1; � � � ; sn; ej)

of Nm �Zn�E de�ne:(a; ei) �1 (b; ej)() a � b or (a = b and ei �E ej);(a; ei) �2 (b; ej)() ei �E ej or (ei = ej and a � b);(a; ei) �3 (b; ej)()(jaj1; jaj2; ei; k1; � � � ; km; jl1j; � � � ; jlnj; l1; � � � ; ln)< (jbj1; jbj2; ej ; r1; � � � ; rm; js1j; � � � ; jsnj; s1; � � � ; sn)in lexiographi order:Then "�1", "�2","�3" are generalized term orders on Nm�Zn�E.We say that "�1" is the TOP (i.e. term-over-position)extension of "�" and "�2" is the POT (i.e position-over-term) extension of "�". "�3" is a generalized term orderde�ned diretly.Lemma 2.1. Let fZnj j j = 1; � � � ; kg be an orthant de-omposition of Zn and "�" be a generalized term order onNm � Zn with respet to the orthant deomposition. Thenevery stritly desending sequene in Nm � Zn is �nite. Inpartiular, every subset of Nm �Zn ontains a smallest ele-ment.Proof. Let a1 � a2 � a3 � � � � be a stritly desendingsequene in Nm�Zn. Sine there are �nitely many orthants,without loss of generality we may assume that all aj are sim-ilar elements, i.e. aj 2 Nm �Zni for a �xed i. By Condition(ii) in De�nition 2.1, Nm � Zni is isomophi to Nm+n as asemigroup. De�ne order �1 on Nm+n as follows:a �1 b() f�1(a) � f�1(b);where f is the isomophism from Nm �Zni to Nm+n and � isthe generalized term order on Nm � Zn. Sine � is a termorder on Nm�Z(n)i , it is easy to see �1 is a term order (in thelassial sense) on Nm+n . Then the assertion of the Lemmafollows from the well-order property of the term order onNm+n .Corollary 2.1. Given an orthant deomposition of Znand a generalized term order "�" on Nm � Zn� E, everystritly desending sequene in Nm � Zn � E is �nite. Inpartiular, every subset of Nm �Zn�E ontains a smallestelement.Proof. Let a1 � a2 � a3 � � � � be a stritly desendingsequene in Nm � Zn � E. Sine E is a �nite set, we maysuppose that all aj are in Nm �Zn�feig for a �xed i. Thenthe onlusion follows immediately from Lemma 2.1.
3. GRÖBNER BASES IN FINITELY GEN-

ERATED DIFFERENCE-DIFFERENTIAL
MODULESLet fZnj j j = 1; � � � ; kg be an orthant deomposition ofZn and \�" be a generalized term order on Nm �Zn w.r.t.the ortant deomposition. Let � be the semi-group of termsintrodued in Setion 1 in whih the elements are of the form(1.1). Sine � is isomorphi to Nm �Zn as a semigroup, theorder \�" de�nes an order on �; we also all it a generalizedterm order on �.Let K be a �-�-�eld and D be the ring of �-�-operatorsover K, and let F be a �nitely generated free D-module (i.e.a �nitely generated free di�erene-di�erential-module) witha set of free generators E = fe1; � � � ; eqg. Then F an be



onsidered as a K-vetor spae generated by the set of allelements of the form �ei, where � 2 � and i = 1; : : : ; q.This set will be denoted by �E and its elements will bealled \terms" of F . If \�" is a generalized term order onNm �Zn�E then \�" obviously indues an order on �E,whih we also all a generalized term order.It is lear that every element f 2 F has a unique repre-sentation as a linear ombination of termsf = a1�1ej1 + � � �+ ad�dejd (3:1)for some nonzero elements ai 2 K (i = 1; � � � ; d) and somedistint elements �1ej1 ; � � � ; �dejd 2 �E. If a term �ej ap-pears with nonzero oeÆient in the representation (3.1) off , then it is alled a term of f . If (k1; � � � ; km; l1; � � � ; ln)and (r1; � � � ; rm; s1; � � � ; sn) are similar elements in Nm �Znthen the two terms �1 = Æk11 � � � Ækmm �l11 � � ��lnn and �2 =Ær11 � � � Ærmm �s11 � � ��snn in � are also alled similar. If �1,�2 2� are similar, then the two terms u = �1ei and v = �2ej 2�E are also alled similar.Definition 3.1. Let �1 = Æk11 � � � Ækmm �l11 � � ��lnn and �2 =Ær11 � � � Ærmm �s11 � � ��snn be two elements in �. If they are sim-ilar and r� � k�, js� j � jl� j for � = 1; � � � ;m, � = 1; � � � ; n,then �1 is alled a multiple of �2 and this relation is de-noted by �2j�1. If �2j�1 and i = j then u = �1ei is alled amultiple of v = �2ej and this relation is denoted by vju.Definition 3.2. Let � be a generalized term order on�E, f 2 F be of the form (3.1). Thenlt(f) = max� f�ieji ji = 1; � � � ; dgis alled the leading term of f . If �ieji = lt(f), then ai isalled the leading oeÆient of f , denoted by l(f).Now we are going to onstrut the division algorithm inthe di�erene-di�erential module F . First we ollet someproperties of relating multipliation of terms to the ordering.In what follows we always assume that an orthant deom-position of Zn is given as well as a generalized term order �w.r.t. this deomposition.Definition 3.3. Let fZnj j j = 1; : : : ; kg be an orthantdeomposition of Zn. Then the subset �j of �,�j = f� = Æk11 � � � Ækmm �l11 � � ��lnn j (l1; � � � ; ln) 2 Znjg;is alled the j-th orthant of �. Let F be a �nitely generatedfree D-module and �E be the set of terms of F . Then�jE = f�ei j � 2 �j ; ei 2 Egis alled the j-th orthant of �E.Obviously, two elements in � or �E are similar if and onlyif they are in the same orthant. So from De�nition 2.3, if �is a generalized term order on � and � � �, then �� � ��holds for any � in the same orthant as �.Lemma 3.1. Let � 2 �; a 2 K, and � be a generalizedterm order on �E � D. Then�a = a0�+ �;where a0 = �(a) for some � 2 ��. If a 6= 0 then also a0 6= 0.Furthermore, � 2 D with lt(�) � � and all terms of � aresimilar to �.

Note that for a generalized term order � we annot expet�lt(f) = lt(�f) unless the leading term lt(f) = �ei of f issuh that � is similar to �.Lemma 3.2. Let F be a �nitely generated free D-moduleand 0 6= f 2 F . Then the following hold:(i) If � 2 �, then lt(�f) = � � u for a unique term u of f .(ii) If lt(f) 2 �jE then for any � 2 �jlt(�f) = � � lt(f) 2 �jE:Lemma 3.3. Let F be a �nitely generated free D-moduleand 0 6= f 2 F . Then for eah j, there exists some � 2 �and a unique term uj of f suh thatlt(�f) = � � uj 2 �jE:We will write ltj(f) for this term uj .If h 2 D, f 2 F , then hf =Pi;k ai;k�iuk for some �i 2 �and uk 2 �E, some of whih might not be terms of h andf . It would be problemati if lt(hf) � �iuk might ourfor some �i and uk in hf . The following proposition assertsthat this undesirable situation annot our.Proposition 3.1. Let 0 6= f 2 F , 0 6= h 2 D. Thenlt(hf) = max�f�iukg where �i are terms of h and uk areterms of f . Therefore lt(hf) = � � u for a unique term � ofh and a unique term u of f .Now we are ready to introdue the onept of \redution",whih is entral in the theory of Gr�obner bases.Theorem 3.1. Let f1; � � � ; fp 2 F n f0g. Then every g 2F an be represented asg = h1f1 + � � �+ hpfp + r (3:2)for some elements h1; � � � ; hp 2 D and r 2 F suh that(i) hi = 0 or lt(hifi) � lt(g) for i = 1; � � � ; p,(ii) r = 0 or lt(r) is not a multiple of any lt(�fi) for � 2 �,i = 1; � � � ; p.Proof. The elements h1; � � � ; hp 2 D and r 2 F anbe omputed as follows: �rst set r = g and hi = 0 fori = 1; : : : ; p. Suppose r 6= 0, i.e.r = l(r)lt(r) + ~r;and lt(r) is a multiple of lt(�ifi) for an element �i 2 �.Suppose lt(�ifi) 2 �jE. Then there exists an element � 2�j suh that lt(r) = � � lt(�ifi):By Lemma 3.2.(ii), lt(� � �ifi) = � � lt(�ifi) = lt(r). So� ��ifi = i� � lt(�ifi)+�i; i:e: i� � lt(�ifi) = � ��ifi��i;where i = l(� � �ifi) and lt(�i) � � � lt(�ifi). Thereforer = l(r)i (��ifi � �i) + ~r = l(r)i ��ifi + (~r� l(r)i �i)| {z }r0 :Now we may replae r by r0 and hi by hi + l(r)i ��i. Weontinue this proess as long as r 6= 0 and lt(r) is a multipleof some lt(�ifi). Sine in eah step we havelt(r0) � lt(� � �ifi) � lt(r) � lt(g);



by the Corollary to Lemma 2.1, the algorithm above termi-nates after �nitely many iterations.Observe that by Proposition 3.1 the statement in part (i)of Theorem 3.1 means that �u � lt(g) for all terms � of hiand all terms u of fi. The r is by no means unique.Definition 3.4. Let f1; : : : ; fp 2 F n f0g, g 2 F . Sup-pose that equation (3.2) holds and the onditions (i), (ii) inTheorem 3.1 are satis�ed. If r 6= g we say g an be reduedby ff1; � � � ; fpg to r. In this ase we have lt(r) � lt(g) by theproof of Theorem 3.1. In the ase of r = g and hi = 0 fori = 1; � � � ; p, we say that g is redued w.r.t. ff1; � � � ; fpg.The following example illustrates the reason for Condition(ii) in Theorem 3.1.Example 3.1. Let K = Q(x1 ; x2), D = K[Æ1; Æ2; �; ��1℄,where Æ1, Æ2 are the partial derivatives w.r.t. x1, x2, re-spetively, and � is an automorphism of K. So D is thefÆ1; Æ2g�f�g-ring over the oeÆient �eld Q(x1 ; x2). Choosethe generalized term order on N2 �Z as in Example 2.3 (a),i.e. u = Æk11 Æk22 �l � v = Ær11 Ær22 �s ()(kuk; k1; k2; l) <lex (kvk; r1; r2; s);where kuk = k1 + k2 + jlj. Letg = Æ1��2 + Æ2�2; f = Æ1��1 + �:Theng = Æ1��2+Æ2�2 = ��1(Æ1��1+�)+(Æ2�2�1) = ��1f+r1:Although lt(r1) = Æ2�2 is not any multiple of lt(f) = Æ1��1,we an �nd � = Æ2� suh that lt(r1) = lt(�f) = lt(Æ1Æ2 +Æ2�2). Thereforeg = ��1f + Æ2�f + (�Æ1Æ2 � 1) = (��1 + Æ2�)f + r2Now r2 satis�es the ondition (ii) in Theorem 3.1. So g isredued by f to r2.Definition 3.5. Let W be a submodule of the �nitelygenerated free D-module F and � be a generalized term or-der on �E. Let G = fg1; � � � ; gpg � Wnf0g. Then G isalled a Gr�obner basis of W (w.r.t. the generalized termorder �) if and only if for every f 2 W n f0g, lt(f) is amultiple of lt(�gj) for some � 2 �, gj 2 G. If every elementof G is redued with respet to the other elements of G, thenG is alled a redued Gr�obner basis of W .Proposition 3.2. Let G be a �nite subset of W n f0g.The following assertions hold:(i) G is a Gr�obner basis of W if and only if every f 2 Wan be redued by G to 0. So a Gr�obner basis of Wgenerates the D-module W .(ii) If G is a Gr�obner basis of W , f 2 F , then f 2 W ifand only if f an be redued by G to 0.(iii) If G is a Gr�obner basis of W , then f 2 W is reduedw.r.t. G if and only if f = 0.Proof. (i) If G is a Gr�obner basis of W and f 2W , thenby Theorem 3.1 f an be redued by G to r with lt(r) notbeing a multiple of any lt(�g) for � 2 �; g 2 G. Sine r 2 Wand G is a Gr�obner basis for W , we must have r = 0.

On the other hand, if every f 2 W an be redued by Gto 0, then f = Pg2G hgg. By Proposition 3.1, there is ag 2 G suh that lt(f) = maxg2Gflt(hgg)g = �u for a termof hg and a term of g. So lt(f) = lt(�g). By De�nition 3.5G is a Gr�obner basis of W .(ii) and (iii) follow easily from Theorem 3.1 and De�nition3.5.Example 3.2. If W is generated by just one element g 2F n f0g, then any �nite subset G of W n f0g ontaining g isa Gr�obner basis of W . In fat, 0 6= f 2 W implies f = hgfor some h 2 D n f0g. By Proposition 3.1, lt(f) = �u =max�f�iukg for a term � of h and a term u of g. Thenlt(f) = lt(�g). By De�nition 3.5, G is a Gr�obner basis ofW .Now we will desribe the Buhberger algorithm for om-puting a Gr�obner basis of a submodule W of F . This re-quires a suitable de�nition of the onept of S-polynomial.Definition 3.6. Let F be a �nitely generated free D-module and f; g 2 F n f0g. For every �j let V (j; f; g) bea �nite system of generators of the K[�j ℄-moduleK[�j ℄hlt(�f)jlt(�f) 2 �jE; � 2 �i \K[�j ℄hlt(�g)jlt(�g) 2 �jE; � 2 �i:Then for every generator v 2 V (j; f; g),S(j; f; g; v) = vltj(f) flj(f) � vltj(g) glj(g)is alled an S-polynomial of f and g with respet to j and v.TheK[�j ℄-module onsidered in De�nition 3.6 is a \mono-mial module", i.e. it is generated by elements ontainingonly one term. Suh a module always has a �nite \mono-mial basis", i.e. every basis element ontains only one term.In the following we assume that V (j; f; g) is suh a �nitemonomial basis.The omputation of V (j; f; g) involves the generalized termorder on �E. Pauer and Unterkirher [12℄ have investi-gated V (j; f; g) for ommutative Laurent polynomial ringsand have given algorithms for some important ases. Theirresults are still valid for di�erene-di�erential modules.Example 3.3. Let F = D = K[Æ1; Æ2; �1; ��11 ; �2; ��12 ℄and K = Q(x1 ; x2), where Æ1, Æ2 are the partial derivativesw.r.t. x1 and x2, respetively, and �1, �2 are two automor-phism on K. Choose the generalized term order on N2 �Z2as in Example 2.3(), i.e.u = Æk11 Æk22 �l11 �l22 � v = Ær11 Ær22 �s11 �s22() (kuk; k1; k2; l1; l2) <lex (kvk; r1; r2; s1; s2);where kuk = �min(0; l1; l2).Let f = ��21 � Æ2, g = Æ1 + �42. Note that the orthants of� are �0;�1;�2 as desribed in Example 2.2 for n = 2. Itis easy to see thatf� 2 � j lt(�f) 2 �0g = �0�21 ; f� 2 � j lt(�g) 2 �0g = �0and flt(�f) 2 �0 j � 2 �g = �0Æ2�21;flt(�g) 2 �0 j � 2 �g = �0Æ1:



Then V (0; f; g) = fv0g = fÆ1Æ2�21g and by De�nition 3.6,S(0; f; g; v0) = Æ1�21f + Æ2�21g = Æ1 + Æ2�21�42:Similarly we havef� 2 � j lt(�f) 2 �1g = �1�1 ; f� 2 � j lt(�g) 2 �1g = �1and flt(�f) 2 �1 j � 2 �g = �1��11 ;flt(�g) 2 �1 j � 2 �g = �1Æ1:Then V (1; f; g) = fv1g = fÆ1��11 g andS(1; f; g; v1) = Æ1�1f � ��11 g = �Æ1Æ2�1 � ��11 �42:Finally, f� 2 � j lt(�f) 2 �2g = �2�21;f� 2 � j lt(�g) 2 �2g = �2��12 ;flt(�f) 2 �2 j � 2 �g = �2Æ2�21;flt(�g) 2 �2 j � 2 �g = �2Æ1��12 :Then V (2; f; g) = fv2g = fÆ1Æ2�1��12 g andS(2; f; g; v2) = Æ1�1��12 f+Æ2�1��12 g = Æ1��11 ��22 +Æ2�1�32:For the proof of the Generalized Buhberger Theorem weneed the following lemmas.Lemma 3.4. Let f1; � � � ; fl 2 F and a1; � � � ; al 2 K. IfPlj=1 aj = 0 , thenlXj=1 ajrj = l�1Xj=1 bj(fj � fj+1)for some bj 2 R.Proof. ObviouslyPlj=1 ajrj =a1(r1 � r2) + (a1 + a2)(r2 � r3) + (a1 + a2 + a3)(r3 � r4)+ � � �+(a1 + a2 + � � �+ al�1)(rl�1 � rl) + (a1 + a2 + � � �+ al)rl:Lemma 3.5. Let gi; gk 2 F and lt(�gi) = lt(�gk) = u 2�jE, where �; � 2 �. Then there exists � 2 �j and v 2V (j; gi; gk), suh that u = �v. Therefore if G is a �nitesubset of Fnf0g and the S-polynomial S(j; gi; gk; v) an beredued to 0 by G then�S(j; gi; gk; v) = ultj(gi) gilj(gi) � ultj(gk) gklj(gk) = Xg2Ghggwith lt(hgg) � u for g 2 G.Proof. Suppose V (j; gi; gk) = fv1; � � � ; vlg. Thenu =X� p�v�;where p� 2 K[�j ℄. Sine p� = P� a����� , where a�� 2 Kand ��� 2 �j , it follows thatu =X�;� a��(���v�): (�)Note that u and ���v� are terms in �jE and we an rewritethe right hand side of the equation (*) suh that the terms���v� are distint. Then we see that there is a unique a�� =

1 and all others are zero. So u = �v for a � 2 �j andv 2 V (j; gi; gk).Now if S(j; gi; gk; v) an be redued to 0 by G thenS(j; gi; gk; v) = Xg2Gh0ggand lt(h0gg) � lt(S(j; gi; gk; v)) � v for g 2 G. Therefore�S(j; gi; gk; v) = Xg2G(�h0g)g = Xg2Ghgg;where hg = �h0g. By Lemma 3.2 (i), lt(�h0gg) = �w for aterm w of h0gg. Then lt(hgg) = lt(�h0gg) = �w. Thereforew � lt(h0gg) � v and � 2 �j imply that �w � �v = u.Theorem 3.2. (Generalized Buhberger Theorem) Let Fbe a free D-module and � be a generalized term order on �E,G be a �nite subset of Fnf0g and W be the submodule in Fgenerated by G. Then G is a Gr�obner basis of W if and onlyif for all �j , for all gi; gk 2 G and for all v 2 V (j; gi; gk),the S-polynomials S(j; gi; gk; v) an be redued to 0 by G.Proof. If G is a Gr�obner basis of W , sine S(j; gi; gk; v)is a element of W , then it follows from Proposition 3.2 thatS(j; gi; gk; v) an be redued to 0 by G.Now let G be a �nite subset of Fnf0g and W be thesubmodule in F generated by G. Suppose that for all �j , forall gi; gk 2 G, and for all v 2 V (j; gi; gk) the S-polynomialsS(j; gi; gk; v) an be redued to 0 by G. We have to showfor every f 2 Wnf0g there are � 2 �, g 2 G suh thatlt(f) = lt(�g). Sine W is generated by G, we havef = Xg2Ghggfor some fhggg2G � D.Let u = max�flt(hgg) j g 2 Gg. We may hoose thefamily fhg j g 2 Gg suh that u is minimal, i.e. if f =Pg2G h0gg then u � max�flt(h0gg) j g 2 Gg. Note thatu � �g for all terms � of hg and all g 2 G by Proposition3.1.If lt(f) = u = lt(hgg) for some g 2 G, then Proposition 3.1implies that there is a term � of hg suh that lt(f) = lt(�g).Therefore the proof would be ompleted. Hene it remainsto show that lt(f) � u annot hold.Suppose lt(f) � u and let B = fg j lt(hgg) = u � lt(f)g.Then, by Proposition 3.1, there is a unique term �g of hg,g 2 B, suh that u = lt(�gg) � lt(�gg) for any terms �g 6= �gof hg. Let g be the oeÆient of �g in hg . We havef =Pg2B hgg +Pg=2B hgg=Pg2B g�gg +Pg2B(hg � g�g)g +Pg=2B hgg;(3:3)where all terms appearing in the last two sums are less thanu w.r.t. �.Suppose vg is the term of g suh that u = lt(�gg) =�gvg � �gv for any terms v 6= vg of g, aording to Lemma3.2(i). Let dg be the oeÆient of vg in g. Then by Lemma3.1,Pg2B g�g = Pg2B g�gdg( gdg )= Pg2B g(d0g�g + �g)( gdg )= Pg2B gd0g�g( gdg ) +Pg2B g�g( gdg )(3:4)



for some elements d0g 2 K and �g 2 D with all terms ap-pearing in the last sum being less than u w.r.t. �.Note that u appears only inPg2B gd0g�g( gdg ) =Pg2B gd0g�gvg +Pg2B gd0g�g( gdg � vg) =(Pg2B gd0g)u+Pg2B gd0g�g( gdg � vg)and all terms appearing in the last sum are less than u. Sinelt(f) � u it follows that Pg2B gd0g = 0. Denote �g( gdg ) byrg. Then by Lemma 3.4,Xg2B gd0g�g( gdg ) = Xg2B(gd0g)rg =Xi;k bi;k(rgi � rgk) (3:5)for some gi; gk 2 B.Sine rgi � rgk = �gi ( gidgi )� �gk ( gkdgk )and �givgi = �gkvgk = u 2 �jE for an �j , it follows fromLemma 3.3 that vgi = ltj(gi), vgk = ltj(gk), dgi = lj(gi),dgk = lj(gk), �gi = ultj(gi) , �gk = ultj(gk) and thenrgi � rgk = ultj(gi) gilj(gi) � ultk(gk) gklj(gk)with lt(rgi � rgk ) � u.Note that for all �j , for all gi; gk 2 G, and for all v 2V (j; gi; gk) the S-polynomials S(j; gi; gk; v) an be reduedto 0 by G. Then by Lemma 3.5, we havergi � rgk = Xg2G pgg (3:6)with lt(pgg) � u.Replae the �rst sum in the r.h.s. of (3.3) by (3.4), andreplae the �rst sum in the r.h.s. of (3.4) by (3.5), thenreplae rgi � rgk in the r.h.s. of (3.5) by (3.6). We getanother form of f =Pg2G h0gg and u � max�flt(h0gg) j g 2Gg, whih is a ontradition to the minimality of u. Thisompletes the proof of the theorem.Example 3.4. If W is a submodule of F generated by a�nite set G and every g 2 G onsists of only one term,then G is a Gr�obner basis of W . In fat in this ase all S-polynomials S(j; gi; gk; v) are 0. By Theorem 3.2 this impliesthat G is a Gr�obner basis of W .Theorem 3.3. (Buhberger Algorithm) Let F be a freeD-module and � be a generalized term order on �E, G be a�nite subset of Fnf0g and W be the submodule in F gener-ated by G. For eah �j and f; g 2 Fnf0g let V (j; f; g) andS(j; f; g; v) be as in De�nition 3.6. Then by the followingalgorithm a Gr�obner basis of W an be omputed:Input: G = fg1; � � � ; g�g whih is a set of generators of WOutput: G0 = fg01; � � � ; g0�g whih is a Gr�obner basis of WBeginG0 := GWhile there exist f; g 2 Gi and v 2 V (j; f; g) suh thatS(j; f; g; v) redues to r 6= 0 by GiDo Gi+1 := Gi [ frgIf Gi+1 = Gi then Gi+1 = G0End

Proof. By Theorem 3.2 we only have to show that thereis an i 2 N suh that Gi+1 = Gi. Suppose there is no suhi 2 N. In every step of the algorithm we get an r suh thatlt(r) is not a multiple of any lt(�g), where � 2 � and g 2 Gi.So if lt(r) 2 �jE thenK(i)j = K[�j ℄hlt(�g) 2 �jE j � 2 �; g 2 Gii( K[�j ℄hlt(�g) 2 �jE j � 2 �; g 2 Gi+1i= K(i+1)jas K[�j ℄-submodules of Le2EK[�j ℄e. Therefore, for alli 2 N there is an m 2 N suh thatK(i)j ( K(i+m)j :This, however, is impossible beause of the Noetherianity ofK[�j ℄.Example 3.5. Let F and the generalized term order on� be as in Example 3.3. Let G = fg1; g2; g3g = f�42+1; �21�1; �21�42 + 1g. Then G is a Gr�obner basis of the submoduleW generated by G. To prove this, we must show that allS-polynomials of G an be redued to 0 by G.Following the method desribed in Example 3.3, we haveV (0; g1; g2) = f�21�42g, V (1; g1; g2) = f��11 �32g, V (2; g1; g2)=f�1��12 g. SoS(0; g1; g2; �21�42) = �21g1 � �42g2 = �21 + �42 = g1 + g2;S(1; g1; g2; ��11 �32) = ��11 ��12 g1 + ��11 �32g2 =��11 ��12 + �1�32 = (��11 ��12 )g3;S(2; g1; g2; �1��12 ) = �1��12 g1 � ��11 ��12 g2 =��11 ��12 + �1�32 = (��11 ��12 )g3:Furthermore, V (0; g1; g3) = f�21�42g, V (1; g1; g3) = f��11 �32g,V (2; g1; g3) = f��12 g. SoS(0; g1; g3; �21�42) = �21g1 � g3 = �21 � 1 = g2;S(1; g1; g3; ��11 �32) = ��11 ��12 g1 � ��11 �32g3 =��11 ��12 � �1�72 =(��11 ��12 )g3 � �1�32g1;(note that the r.h.s. of this equation satis�es the onditionin Theorem 3.1 (i), i.e. lt(higi) � lt(S))S(2; g1; g3; ��12 ) = ��12 g1 � ��12 g3 = �32 � �21�32 = ��32g2:Finally, V (0; g2; g3) = f�21�42g, V (1; g2; g3) = f��11 g,V (2; g2; g3) = f�1��12 g. SoS(0; g2; g3; �21�42) = �42g2 � g3 = ��42 � 1 = �g1;S(1; g2; g3; ��11 ) = ��11 g2 � ��11 g3 = �1�42 + �1 =�1g1;S(2; g2; g3; �1��12 ) = ��11 ��12 g2 � �1��12 g3 =���11 ��12 � �31�32 =��11 ��12 g3 + �1�32g2:The r.h.s. of this equation also satis�es the ondition inTheorem 3.1 (i). So, by Theorem 3.2, G is a Gr�obner basisof W .
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